001     49699
005     20180211170319.0
024 7 _ |2 DOI
|a 10.1016/j.actamat.2005.07.033
024 7 _ |2 WOS
|a WOS:000232859000020
037 _ _ |a PreJuSER-49699
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Metallurgy & Metallurgical Engineering
100 1 _ |a Guo, X.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB518
245 _ _ |a Ionic conduction in zirconia films on nanometer thickness
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2005
300 _ _ |a 5161
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Acta Materialia
|x 1359-6454
|0 67
|v 53
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Polycrystalline 8 mol% Y2O3-stabilized ZrO2 films with thicknesses of 12 and 25 nm were deposited on (100) MgO substrates, their nanostructures were investigated by means of transmission electron microscopy (TEM), high-resolution TEM and atomic force microscopy, and the electrical properties of the nanostructured films were characterized in dry and humid O-2. Compared with microcrystalline bulk ceramics, the ionic conductivity of the nanostructured films is lower by about a factor of 4, which is mainly due to the lower bulk conductivity and the low grain-boundary conductivity. There is not remarkable proton conduction in the nanostructured films when annealed in water vapor, and the influence of the ZrO2/MgO interface on its ionic conduction is negligible. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a zirconia
653 2 0 |2 Author
|a nanostructure
653 2 0 |2 Author
|a electrical properties
653 2 0 |2 Author
|a laser deposition
700 1 _ |a Vasco, E.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Mi, S.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Szot, K.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB2799
700 1 _ |a Wachsman, E.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 5
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1016/j.actamat.2005.07.033
|g Vol. 53, p. 5161
|p 5161
|q 53<5161
|0 PERI:(DE-600)2014621-8
|t Acta materialia
|v 53
|y 2005
|x 1359-6454
856 7 _ |u http://dx.doi.org/10.1016/j.actamat.2005.07.033
909 C O |o oai:juser.fz-juelich.de:49699
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
970 _ _ |a VDB:(DE-Juel1)77738
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21