000049739 001__ 49739
000049739 005__ 20180211182741.0
000049739 0247_ $$2DOI$$a10.1016/S0955-2219(03)00583-1
000049739 0247_ $$2WOS$$aWOS:000189247800049
000049739 037__ $$aPreJuSER-49739
000049739 041__ $$aeng
000049739 082__ $$a660
000049739 084__ $$2WoS$$aMaterials Science, Ceramics
000049739 1001_ $$0P:(DE-HGF)0$$aSchmitz, T.$$b0
000049739 245__ $$aIn-situ compensation of the parasitic capacitance for nanoscale hysteresis measurements
000049739 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2004
000049739 300__ $$a1145
000049739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000049739 3367_ $$2DataCite$$aOutput Types/Journal article
000049739 3367_ $$00$$2EndNote$$aJournal Article
000049739 3367_ $$2BibTeX$$aARTICLE
000049739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000049739 3367_ $$2DRIVER$$aarticle
000049739 440_0 $$03891$$aJournal of the European Ceramic Society$$v24$$x0955-2219
000049739 500__ $$aRecord converted from VDB: 12.11.2012
000049739 520__ $$aFerroelectric capacitors of submicron sizes for nonvolatile memory applications are entering the structure size of nanotechnology. Therefore the signal level for hysteresis measurements is getting much smaller than the influence of the parasitic capacitance of the measurement setup, which is caused by the cantilever of a scanning force microscope (SFM) used for contacting. Our novel compensation method significantly increases the signal to noise ratio by active cancellation of the parasitic capacitance of the setup during the measurement. From measurements and simulations the parasitic capacitance of an SFM has been determined to be 170 fF. This is about two orders of magnitude higher than the capacitance of a ferroelectric capacitor of submicron size. The new compensation method will be demonstrated on single ferroelectric PbZrxTi1-xO3 (PZT) submicron capacitors. (C) 2003 Elsevier Ltd. All rights reserved.
000049739 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$cI01$$x0
000049739 588__ $$aDataset connected to Web of Science
000049739 650_7 $$2WoSType$$aJ
000049739 65320 $$2Author$$acapacitors
000049739 65320 $$2Author$$aelectrical properties
000049739 65320 $$2Author$$aferroelectric properties
000049739 65320 $$2Author$$anon-destructive evaluation
000049739 65320 $$2Author$$aPZT
000049739 7001_ $$0P:(DE-HGF)0$$aPrume, K.$$b1
000049739 7001_ $$0P:(DE-HGF)0$$aReichenberg, B.$$b2
000049739 7001_ $$0P:(DE-HGF)0$$aRoelofs, A.$$b3
000049739 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4$$uFZJ
000049739 7001_ $$0P:(DE-HGF)0$$aTiedke, S.$$b5
000049739 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/S0955-2219(03)00583-1$$gVol. 24, p. 1145$$p1145$$q24<1145$$tJournal of the European Ceramic Society$$v24$$x0955-2219$$y2004
000049739 8567_ $$uhttp://dx.doi.org/10.1016/S0955-2219(03)00583-1
000049739 909CO $$ooai:juser.fz-juelich.de:49739$$pVDB
000049739 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$x0
000049739 9141_ $$aNachtrag$$y2004
000049739 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000049739 9201_ $$0I:(DE-Juel1)VDB321$$d31.12.2006$$gIFF$$kIFF-IEM$$lElektronische Materialien$$x0
000049739 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000049739 970__ $$aVDB:(DE-Juel1)77791
000049739 980__ $$aVDB
000049739 980__ $$aConvertedRecord
000049739 980__ $$ajournal
000049739 980__ $$aI:(DE-Juel1)PGI-7-20110106
000049739 980__ $$aI:(DE-Juel1)VDB381
000049739 980__ $$aUNRESTRICTED
000049739 981__ $$aI:(DE-Juel1)PGI-7-20110106
000049739 981__ $$aI:(DE-Juel1)VDB381