001     49739
005     20180211182741.0
024 7 _ |2 DOI
|a 10.1016/S0955-2219(03)00583-1
024 7 _ |2 WOS
|a WOS:000189247800049
037 _ _ |a PreJuSER-49739
041 _ _ |a eng
082 _ _ |a 660
084 _ _ |2 WoS
|a Materials Science, Ceramics
100 1 _ |a Schmitz, T.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a In-situ compensation of the parasitic capacitance for nanoscale hysteresis measurements
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2004
300 _ _ |a 1145
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of the European Ceramic Society
|x 0955-2219
|0 3891
|v 24
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Ferroelectric capacitors of submicron sizes for nonvolatile memory applications are entering the structure size of nanotechnology. Therefore the signal level for hysteresis measurements is getting much smaller than the influence of the parasitic capacitance of the measurement setup, which is caused by the cantilever of a scanning force microscope (SFM) used for contacting. Our novel compensation method significantly increases the signal to noise ratio by active cancellation of the parasitic capacitance of the setup during the measurement. From measurements and simulations the parasitic capacitance of an SFM has been determined to be 170 fF. This is about two orders of magnitude higher than the capacitance of a ferroelectric capacitor of submicron size. The new compensation method will be demonstrated on single ferroelectric PbZrxTi1-xO3 (PZT) submicron capacitors. (C) 2003 Elsevier Ltd. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a capacitors
653 2 0 |2 Author
|a electrical properties
653 2 0 |2 Author
|a ferroelectric properties
653 2 0 |2 Author
|a non-destructive evaluation
653 2 0 |2 Author
|a PZT
700 1 _ |a Prume, K.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Reichenberg, B.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Roelofs, A.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)131022
700 1 _ |a Tiedke, S.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/S0955-2219(03)00583-1
|g Vol. 24, p. 1145
|p 1145
|q 24<1145
|0 PERI:(DE-600)2013983-4
|t Journal of the European Ceramic Society
|v 24
|y 2004
|x 0955-2219
856 7 _ |u http://dx.doi.org/10.1016/S0955-2219(03)00583-1
909 C O |o oai:juser.fz-juelich.de:49739
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |a Nachtrag
|y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)77791
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21