000050945 001__ 50945 000050945 005__ 20200423204323.0 000050945 0247_ $$2pmid$$apmid:16585752 000050945 0247_ $$2pmc$$apmc:PMC1446976 000050945 0247_ $$2DOI$$a10.1128/JB.188.8.2907-2918.2006 000050945 0247_ $$2WOS$$aWOS:000236746200018 000050945 0247_ $$2Handle$$a2128/2428 000050945 0247_ $$2altmetric$$aaltmetric:21815077 000050945 037__ $$aPreJuSER-50945 000050945 041__ $$aeng 000050945 082__ $$a570 000050945 084__ $$2WoS$$aMicrobiology 000050945 1001_ $$0P:(DE-Juel1)VDB57796$$aWennerhold, J.$$b0$$uFZJ 000050945 245__ $$aThe DtxR Regulon of Corynebacterium glutamicum 000050945 260__ $$aWashington, DC$$bSoc.$$c2006 000050945 300__ $$a2907 - 2918 000050945 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000050945 3367_ $$2DataCite$$aOutput Types/Journal article 000050945 3367_ $$00$$2EndNote$$aJournal Article 000050945 3367_ $$2BibTeX$$aARTICLE 000050945 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000050945 3367_ $$2DRIVER$$aarticle 000050945 440_0 $$03082$$aJournal of Bacteriology$$v188$$x0021-9193$$y8 000050945 500__ $$aRecord converted from VDB: 12.11.2012 000050945 520__ $$aPrevious studies with Corynebacterium diphtheriae and Mycobacterium species revealed that the transcriptional regulator DtxR and its ortholog IdeR play a central role in the control of iron metabolism. In the present work, we used genome-based approaches to determine the DtxR regulon of Corynebacterium glutamicum, a nonpathogenic relative of C. diphtheriae. First, global gene expression of a dtxR deletion mutant was compared with that of the wild type using DNA microarrays. Second, we used a computer-based approach to identify 117 putative DtxR binding sites in the C. glutamicum genome. In the third step, 74 of the corresponding genome regions were amplified by PCR, 51 of which were shifted by the DtxR protein. Finally, we analyzed which of the genes preceded by a functional DtxR binding site showed altered mRNA levels in the transcriptome comparison. Fifty-one genes organized in 27 putative operons displayed an increased mRNA level in the DeltadtxR mutant and thus are presumably repressed by DtxR. The majority of these genes are obviously involved in iron acquisition, three encode transcriptional regulators, e.g., the recently identified repressor of iron proteins RipA, and the others encode proteins of diverse or unknown functions. Thirteen genes showed a decreased mRNA level in the DeltadtxR mutant and thus might be activated by DtxR. This group included the suf operon, whose products are involved in the formation and repair of iron-sulfur clusters, and several genes for transcriptional regulators. Our results clearly establish DtxR as the master regulator of iron-dependent gene expression in C. glutamicum. 000050945 536__ $$0G:(DE-Juel1)FUEK410$$2G:(DE-HGF)$$aBiotechnologie$$cPBT$$x0 000050945 588__ $$aDataset connected to Web of Science, Pubmed 000050945 650_2 $$2MeSH$$aBacterial Proteins: genetics 000050945 650_2 $$2MeSH$$aBacterial Proteins: physiology 000050945 650_2 $$2MeSH$$aBinding Sites 000050945 650_2 $$2MeSH$$aComputational Biology 000050945 650_2 $$2MeSH$$aCorynebacterium glutamicum: genetics 000050945 650_2 $$2MeSH$$aCorynebacterium glutamicum: physiology 000050945 650_2 $$2MeSH$$aDNA, Bacterial: metabolism 000050945 650_2 $$2MeSH$$aDNA-Binding Proteins: genetics 000050945 650_2 $$2MeSH$$aDNA-Binding Proteins: physiology 000050945 650_2 $$2MeSH$$aElectrophoretic Mobility Shift Assay 000050945 650_2 $$2MeSH$$aGene Deletion 000050945 650_2 $$2MeSH$$aGene Expression Regulation, Bacterial 000050945 650_2 $$2MeSH$$aIron: metabolism 000050945 650_2 $$2MeSH$$aOligonucleotide Array Sequence Analysis 000050945 650_2 $$2MeSH$$aOperon 000050945 650_2 $$2MeSH$$aProtein Binding 000050945 650_2 $$2MeSH$$aRNA, Bacterial: analysis 000050945 650_2 $$2MeSH$$aRNA, Messenger: analysis 000050945 650_2 $$2MeSH$$aRegulon 000050945 650_7 $$00$$2NLM Chemicals$$aBacterial Proteins 000050945 650_7 $$00$$2NLM Chemicals$$aDNA, Bacterial 000050945 650_7 $$00$$2NLM Chemicals$$aDNA-Binding Proteins 000050945 650_7 $$00$$2NLM Chemicals$$aRNA, Bacterial 000050945 650_7 $$00$$2NLM Chemicals$$aRNA, Messenger 000050945 650_7 $$07439-89-6$$2NLM Chemicals$$aIron 000050945 650_7 $$2WoSType$$aJ 000050945 7001_ $$0P:(DE-Juel1)128943$$aBott, M.$$b1$$uFZJ 000050945 773__ $$0PERI:(DE-600)1481988-0$$a10.1128/JB.188.8.2907-2918.2006$$gVol. 188, p. 2907 - 2918$$p2907 - 2918$$q188<2907 - 2918$$tJournal of bacteriology$$v188$$x0021-9193$$y2006 000050945 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446976 000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.pdf$$yOpenAccess 000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000050945 909CO $$ooai:juser.fz-juelich.de:50945$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000050945 9131_ $$0G:(DE-Juel1)FUEK410$$baußerhalb PoF$$kPBT$$lohne FE$$vBiotechnologie$$x0 000050945 9141_ $$y2006 000050945 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000050945 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000050945 9201_ $$0I:(DE-Juel1)VDB55$$gIBT$$kIBT-1$$lBiotechnologie 1$$x0$$zab 31.10.10 weitergeführt als IBG-1 000050945 970__ $$aVDB:(DE-Juel1)79823 000050945 980__ $$aVDB 000050945 980__ $$aJUWEL 000050945 980__ $$aConvertedRecord 000050945 980__ $$ajournal 000050945 980__ $$aI:(DE-Juel1)IBG-1-20101118 000050945 980__ $$aUNRESTRICTED 000050945 980__ $$aFullTexts 000050945 9801_ $$aFullTexts 000050945 981__ $$aI:(DE-Juel1)IBG-1-20101118