000050945 001__ 50945
000050945 005__ 20200423204323.0
000050945 0247_ $$2pmid$$apmid:16585752
000050945 0247_ $$2pmc$$apmc:PMC1446976
000050945 0247_ $$2DOI$$a10.1128/JB.188.8.2907-2918.2006
000050945 0247_ $$2WOS$$aWOS:000236746200018
000050945 0247_ $$2Handle$$a2128/2428
000050945 0247_ $$2altmetric$$aaltmetric:21815077
000050945 037__ $$aPreJuSER-50945
000050945 041__ $$aeng
000050945 082__ $$a570
000050945 084__ $$2WoS$$aMicrobiology
000050945 1001_ $$0P:(DE-Juel1)VDB57796$$aWennerhold, J.$$b0$$uFZJ
000050945 245__ $$aThe DtxR Regulon of Corynebacterium glutamicum
000050945 260__ $$aWashington, DC$$bSoc.$$c2006
000050945 300__ $$a2907 - 2918
000050945 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000050945 3367_ $$2DataCite$$aOutput Types/Journal article
000050945 3367_ $$00$$2EndNote$$aJournal Article
000050945 3367_ $$2BibTeX$$aARTICLE
000050945 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000050945 3367_ $$2DRIVER$$aarticle
000050945 440_0 $$03082$$aJournal of Bacteriology$$v188$$x0021-9193$$y8
000050945 500__ $$aRecord converted from VDB: 12.11.2012
000050945 520__ $$aPrevious studies with Corynebacterium diphtheriae and Mycobacterium species revealed that the transcriptional regulator DtxR and its ortholog IdeR play a central role in the control of iron metabolism. In the present work, we used genome-based approaches to determine the DtxR regulon of Corynebacterium glutamicum, a nonpathogenic relative of C. diphtheriae. First, global gene expression of a dtxR deletion mutant was compared with that of the wild type using DNA microarrays. Second, we used a computer-based approach to identify 117 putative DtxR binding sites in the C. glutamicum genome. In the third step, 74 of the corresponding genome regions were amplified by PCR, 51 of which were shifted by the DtxR protein. Finally, we analyzed which of the genes preceded by a functional DtxR binding site showed altered mRNA levels in the transcriptome comparison. Fifty-one genes organized in 27 putative operons displayed an increased mRNA level in the DeltadtxR mutant and thus are presumably repressed by DtxR. The majority of these genes are obviously involved in iron acquisition, three encode transcriptional regulators, e.g., the recently identified repressor of iron proteins RipA, and the others encode proteins of diverse or unknown functions. Thirteen genes showed a decreased mRNA level in the DeltadtxR mutant and thus might be activated by DtxR. This group included the suf operon, whose products are involved in the formation and repair of iron-sulfur clusters, and several genes for transcriptional regulators. Our results clearly establish DtxR as the master regulator of iron-dependent gene expression in C. glutamicum.
000050945 536__ $$0G:(DE-Juel1)FUEK410$$2G:(DE-HGF)$$aBiotechnologie$$cPBT$$x0
000050945 588__ $$aDataset connected to Web of Science, Pubmed
000050945 650_2 $$2MeSH$$aBacterial Proteins: genetics
000050945 650_2 $$2MeSH$$aBacterial Proteins: physiology
000050945 650_2 $$2MeSH$$aBinding Sites
000050945 650_2 $$2MeSH$$aComputational Biology
000050945 650_2 $$2MeSH$$aCorynebacterium glutamicum: genetics
000050945 650_2 $$2MeSH$$aCorynebacterium glutamicum: physiology
000050945 650_2 $$2MeSH$$aDNA, Bacterial: metabolism
000050945 650_2 $$2MeSH$$aDNA-Binding Proteins: genetics
000050945 650_2 $$2MeSH$$aDNA-Binding Proteins: physiology
000050945 650_2 $$2MeSH$$aElectrophoretic Mobility Shift Assay
000050945 650_2 $$2MeSH$$aGene Deletion
000050945 650_2 $$2MeSH$$aGene Expression Regulation, Bacterial
000050945 650_2 $$2MeSH$$aIron: metabolism
000050945 650_2 $$2MeSH$$aOligonucleotide Array Sequence Analysis
000050945 650_2 $$2MeSH$$aOperon
000050945 650_2 $$2MeSH$$aProtein Binding
000050945 650_2 $$2MeSH$$aRNA, Bacterial: analysis
000050945 650_2 $$2MeSH$$aRNA, Messenger: analysis
000050945 650_2 $$2MeSH$$aRegulon
000050945 650_7 $$00$$2NLM Chemicals$$aBacterial Proteins
000050945 650_7 $$00$$2NLM Chemicals$$aDNA, Bacterial
000050945 650_7 $$00$$2NLM Chemicals$$aDNA-Binding Proteins
000050945 650_7 $$00$$2NLM Chemicals$$aRNA, Bacterial
000050945 650_7 $$00$$2NLM Chemicals$$aRNA, Messenger
000050945 650_7 $$07439-89-6$$2NLM Chemicals$$aIron
000050945 650_7 $$2WoSType$$aJ
000050945 7001_ $$0P:(DE-Juel1)128943$$aBott, M.$$b1$$uFZJ
000050945 773__ $$0PERI:(DE-600)1481988-0$$a10.1128/JB.188.8.2907-2918.2006$$gVol. 188, p. 2907 - 2918$$p2907 - 2918$$q188<2907 - 2918$$tJournal of bacteriology$$v188$$x0021-9193$$y2006
000050945 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446976
000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.pdf$$yOpenAccess
000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000050945 8564_ $$uhttps://juser.fz-juelich.de/record/50945/files/79823.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000050945 909CO $$ooai:juser.fz-juelich.de:50945$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000050945 9131_ $$0G:(DE-Juel1)FUEK410$$baußerhalb PoF$$kPBT$$lohne FE$$vBiotechnologie$$x0
000050945 9141_ $$y2006
000050945 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000050945 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000050945 9201_ $$0I:(DE-Juel1)VDB55$$gIBT$$kIBT-1$$lBiotechnologie 1$$x0$$zab 31.10.10 weitergeführt als IBG-1
000050945 970__ $$aVDB:(DE-Juel1)79823
000050945 980__ $$aVDB
000050945 980__ $$aJUWEL
000050945 980__ $$aConvertedRecord
000050945 980__ $$ajournal
000050945 980__ $$aI:(DE-Juel1)IBG-1-20101118
000050945 980__ $$aUNRESTRICTED
000050945 980__ $$aFullTexts
000050945 9801_ $$aFullTexts
000050945 981__ $$aI:(DE-Juel1)IBG-1-20101118