000052292 001__ 52292
000052292 005__ 20240712100853.0
000052292 0247_ $$2DOI$$a10.1029/2006GL026939
000052292 0247_ $$2WOS$$aWOS:000239786500007
000052292 0247_ $$2Handle$$a2128/20805
000052292 037__ $$aPreJuSER-52292
000052292 041__ $$aeng
000052292 082__ $$a550
000052292 084__ $$2WoS$$aGeosciences, Multidisciplinary
000052292 1001_ $$0P:(DE-Juel1)VDB14290$$aLemmen, C.$$b0$$uFZJ
000052292 245__ $$aChemical ozone loss in a chemistry-climate model from 1960 to 1999
000052292 260__ $$aWashington, DC$$bAmerican Geophysical Union$$c2006
000052292 300__ $$aL15820
000052292 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000052292 3367_ $$2DataCite$$aOutput Types/Journal article
000052292 3367_ $$00$$2EndNote$$aJournal Article
000052292 3367_ $$2BibTeX$$aARTICLE
000052292 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000052292 3367_ $$2DRIVER$$aarticle
000052292 440_0 $$02249$$aGeophysical Research Letters$$v33$$x0094-8276
000052292 500__ $$aRecord converted from VDB: 12.11.2012
000052292 520__ $$aIn the recent WMO assessment of ozone depletion, the minimum ozone column is used to assess the evolution of the polar ozone layer simulated in several chemistry-climate models (CCMs). The ozone column may be strongly influenced by changes in transport and is therefore not well-suited to identify changes in chemistry. The quantification of chemical ozone depletion can be achieved with tracer-tracer correlations (TRAC). For forty Antarctic winters ( 1960 - 1999), we present the seasonal chemical depletion simulated with the ECHAM4. L39(DLR)/CHEM model. Analyzing methane - ozone correlations, we find a mean chemical ozone loss of 80 +/- 10 DU during the 1990s, with a maximum of 94 DU. Compared to ozone loss deduced from HALOE measurements the model underestimates chemical loss by 37%. The average multidecadal trend in loss from 1960 to 1999 is 17 +/- 3 DU per decade. The largest contribution to this trend comes from the 62 +/- 11 DU ozone loss increase between the 1970s and 1990s.
000052292 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000052292 588__ $$aDataset connected to Web of Science
000052292 650_7 $$2WoSType$$aJ
000052292 7001_ $$0P:(DE-HGF)0$$aDameris, M.$$b1
000052292 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b2$$uFZJ
000052292 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b3$$uFZJ
000052292 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2006GL026939$$gVol. 33, p. L15820$$pL15820$$q33<L15820$$tGeophysical research letters$$v33$$x0094-8276$$y2006
000052292 8567_ $$uhttp://dx.doi.org/10.1029/2006GL026939
000052292 8564_ $$uhttps://juser.fz-juelich.de/record/52292/files/2006GL026939.pdf$$yOpenAccess
000052292 8564_ $$uhttps://juser.fz-juelich.de/record/52292/files/2006GL026939.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000052292 909CO $$ooai:juser.fz-juelich.de:52292$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000052292 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000052292 9141_ $$y2006
000052292 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000052292 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000052292 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000052292 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000052292 970__ $$aVDB:(DE-Juel1)82215
000052292 9801_ $$aFullTexts
000052292 980__ $$aVDB
000052292 980__ $$aConvertedRecord
000052292 980__ $$ajournal
000052292 980__ $$aI:(DE-Juel1)IEK-7-20101013
000052292 980__ $$aI:(DE-Juel1)VDB1045
000052292 980__ $$aUNRESTRICTED
000052292 981__ $$aI:(DE-Juel1)ICE-4-20101013
000052292 981__ $$aI:(DE-Juel1)IEK-7-20101013
000052292 981__ $$aI:(DE-Juel1)VDB1045