000053199 001__ 53199
000053199 005__ 20190625111110.0
000053199 0247_ $$2DOI$$a10.1109/TED.2005.859654
000053199 0247_ $$2WOS$$aWOS:000233682200006
000053199 0247_ $$2altmetric$$aaltmetric:3406952
000053199 037__ $$aPreJuSER-53199
000053199 041__ $$aeng
000053199 084__ $$2WoS$$aEngineering, Electrical & Electronic
000053199 084__ $$2WoS$$aPhysics, Applied
000053199 1001_ $$0P:(DE-HGF)0$$aAppenzeller, J.$$b0
000053199 245__ $$aComparing Carbon Nanotube Transistors - The Ideal Choice: A Novel Tunneling Device Design
000053199 260__ $$c2005
000053199 300__ $$a2568
000053199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053199 3367_ $$2DataCite$$aOutput Types/Journal article
000053199 3367_ $$00$$2EndNote$$aJournal Article
000053199 3367_ $$2BibTeX$$aARTICLE
000053199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053199 3367_ $$2DRIVER$$aarticle
000053199 440_0 $$02508$$aIEEE Transactions on Electron Devices$$v52$$x0018-9383$$y12
000053199 500__ $$aRecord converted from VDB: 12.11.2012
000053199 520__ $$aThree different carbon nanotube (CN) field-effect transistor (CNFET) designs are compared by simulation and experiment. While a C-CNFET with a doping profile similar to a "conventional" (referred to as C-CNFET in the following) p-or n-MOSFET in principle exhibits superior device characteristics when compared with a Schottky barrier CNFET, we find that aggressively scaled C-CNFET devices suffer from "charge pile-up" in the channel. This effect which is also known to occur in floating body silicon transistors deteriorates the C-CNFET off-state substantially and ultimately limits the achievable on/off-current ratio. In order to overcome this obstacle we explore the possibility of using CNs as gate-controlled tunneling devices (T-CNFETs). The T-CNFET benefits from a steep inverse subthreshold slope and a well controlled off-state while at the same time delivering high performance on-state characteristics. According to our simulation, the T-CNFET is the ideal transistor design for an ultrathin body three-terminal device like the CNFET.
000053199 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$cI01$$x0
000053199 588__ $$aDataset connected to Web of Science
000053199 65320 $$2Author$$acarbon nanotube (CN)
000053199 65320 $$2Author$$afield-effect transistor (FET)
000053199 65320 $$2Author$$atunneling (T) device
000053199 650_7 $$2WoSType$$aJ
000053199 7001_ $$0P:(DE-HGF)0$$aLin, Y.-M.$$b1
000053199 7001_ $$0P:(DE-Juel1)VDB56683$$aKnoch, J.$$b2$$uFZJ
000053199 7001_ $$0P:(DE-HGF)0$$aChen, Z.$$b3
000053199 7001_ $$0P:(DE-HGF)0$$aAvouris, P.$$b4
000053199 773__ $$0PERI:(DE-600)2028088-9$$a10.1109/TED.2005.859654$$gVol. 52, p. 2568$$p2568$$q52<2568$$tIEEE Transactions on Electron Devices$$v52$$x0018-9383$$y2005
000053199 8567_ $$uhttp://dx.doi.org/10.1109/TED.2005.859654
000053199 909CO $$ooai:juser.fz-juelich.de:53199$$pVDB
000053199 9141_ $$aNachtrag$$y2005
000053199 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$x0
000053199 9201_ $$0I:(DE-Juel1)VDB41$$d31.12.2006$$gISG$$kISG-1$$lInstitut für Halbleiterschichten und Bauelemente$$x0
000053199 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000053199 970__ $$aVDB:(DE-Juel1)83657
000053199 980__ $$aVDB
000053199 980__ $$aConvertedRecord
000053199 980__ $$ajournal
000053199 980__ $$aI:(DE-Juel1)PGI-9-20110106
000053199 980__ $$aI:(DE-Juel1)VDB381
000053199 980__ $$aUNRESTRICTED
000053199 981__ $$aI:(DE-Juel1)PGI-9-20110106
000053199 981__ $$aI:(DE-Juel1)VDB381