001     53199
005     20190625111110.0
024 7 _ |2 DOI
|a 10.1109/TED.2005.859654
024 7 _ |2 WOS
|a WOS:000233682200006
024 7 _ |a altmetric:3406952
|2 altmetric
037 _ _ |a PreJuSER-53199
041 _ _ |a eng
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-HGF)0
|a Appenzeller, J.
|b 0
245 _ _ |a Comparing Carbon Nanotube Transistors - The Ideal Choice: A Novel Tunneling Device Design
260 _ _ |c 2005
300 _ _ |a 2568
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 2508
|a IEEE Transactions on Electron Devices
|v 52
|x 0018-9383
|y 12
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Three different carbon nanotube (CN) field-effect transistor (CNFET) designs are compared by simulation and experiment. While a C-CNFET with a doping profile similar to a "conventional" (referred to as C-CNFET in the following) p-or n-MOSFET in principle exhibits superior device characteristics when compared with a Schottky barrier CNFET, we find that aggressively scaled C-CNFET devices suffer from "charge pile-up" in the channel. This effect which is also known to occur in floating body silicon transistors deteriorates the C-CNFET off-state substantially and ultimately limits the achievable on/off-current ratio. In order to overcome this obstacle we explore the possibility of using CNs as gate-controlled tunneling devices (T-CNFETs). The T-CNFET benefits from a steep inverse subthreshold slope and a well controlled off-state while at the same time delivering high performance on-state characteristics. According to our simulation, the T-CNFET is the ideal transistor design for an ultrathin body three-terminal device like the CNFET.
536 _ _ |0 G:(DE-Juel1)FUEK252
|2 G:(DE-HGF)
|a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a carbon nanotube (CN)
653 2 0 |2 Author
|a field-effect transistor (FET)
653 2 0 |2 Author
|a tunneling (T) device
700 1 _ |0 P:(DE-HGF)0
|a Lin, Y.-M.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB56683
|a Knoch, J.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Chen, Z.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Avouris, P.
|b 4
773 _ _ |0 PERI:(DE-600)2028088-9
|a 10.1109/TED.2005.859654
|g Vol. 52, p. 2568
|p 2568
|q 52<2568
|t IEEE Transactions on Electron Devices
|v 52
|x 0018-9383
|y 2005
856 7 _ |u http://dx.doi.org/10.1109/TED.2005.859654
909 C O |o oai:juser.fz-juelich.de:53199
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK252
|b Information
|k I01
|l Informationstechnologie mit nanoelektronischen Systemen
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|x 0
914 1 _ |a Nachtrag
|y 2005
920 1 _ |0 I:(DE-Juel1)VDB41
|d 31.12.2006
|g ISG
|k ISG-1
|l Institut für Halbleiterschichten und Bauelemente
|x 0
920 1 _ |0 I:(DE-Juel1)VDB381
|d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|x 1
|z 381
970 _ _ |a VDB:(DE-Juel1)83657
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21