000053200 001__ 53200
000053200 005__ 20180211172334.0
000053200 0247_ $$2DOI$$a10.1007/s10008-005-0090-y
000053200 0247_ $$2WOS$$aWOS:000236001800009
000053200 037__ $$aPreJuSER-53200
000053200 041__ $$aeng
000053200 082__ $$a540
000053200 084__ $$2WoS$$aElectrochemistry
000053200 1001_ $$0P:(DE-Juel1)VDB60931$$aMunoz, A. G.$$b0$$uFZJ
000053200 245__ $$aElectrodeposition of Metals on Anodized Thin Nb Films
000053200 260__ $$aBerlin$$bSpringer$$c2006
000053200 300__ $$a329 - 336
000053200 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053200 3367_ $$2DataCite$$aOutput Types/Journal article
000053200 3367_ $$00$$2EndNote$$aJournal Article
000053200 3367_ $$2BibTeX$$aARTICLE
000053200 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053200 3367_ $$2DRIVER$$aarticle
000053200 440_0 $$012701$$aJournal of Solid State Electrochemistry$$v10$$x1432-8488$$y5
000053200 500__ $$aRecord converted from VDB: 12.11.2012
000053200 520__ $$aThe influence of the electronic properties of oxidized Nb surfaces on the electrodeposition of metals (Me=Co, Cu, Ag) with different equilibrium potentials U-Me/Mez studied by conventional electrochemical techniques and atomic force microscopy. The results show that relatively thin anodic Nb2O5 films (thickness < 11 nm) present a frequency-dependent n-type semiconductor behavior, which can be described by the theory of amorphous semiconductor. The Schottky barrier, formed at the a-Nb2O5/electrolyte interface, affects the deposition rate of metals with equilibrium potentials more positive than the flat band potential (UMe/Mez+ > U-FB). Then, the dependence of density of states on the oxide thickness and anodization conditions leads to different extents of the band bending, affecting directly the rate of electron transfer.
000053200 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000053200 588__ $$aDataset connected to Web of Science
000053200 650_7 $$2WoSType$$aJ
000053200 65320 $$2Author$$aNb oxide
000053200 65320 $$2Author$$aelectrodeposition
000053200 65320 $$2Author$$an-semiconductors
000053200 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b1$$uFZJ
000053200 773__ $$0PERI:(DE-600)1478940-1$$a10.1007/s10008-005-0090-y$$gVol. 10, p. 329 - 336$$p329 - 336$$q10<329 - 336$$tJournal of solid state electrochemistry$$v10$$x1432-8488$$y2006
000053200 8567_ $$uhttp://dx.doi.org/10.1007/s10008-005-0090-y
000053200 909CO $$ooai:juser.fz-juelich.de:53200$$pVDB
000053200 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000053200 9141_ $$y2006
000053200 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000053200 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000053200 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000053200 970__ $$aVDB:(DE-Juel1)83658
000053200 980__ $$aVDB
000053200 980__ $$aConvertedRecord
000053200 980__ $$ajournal
000053200 980__ $$aI:(DE-Juel1)PGI-3-20110106
000053200 980__ $$aI:(DE-Juel1)VDB381
000053200 980__ $$aUNRESTRICTED
000053200 981__ $$aI:(DE-Juel1)PGI-3-20110106
000053200 981__ $$aI:(DE-Juel1)VDB381