000053860 001__ 53860 000053860 005__ 20200423204403.0 000053860 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org 000053860 0247_ $$2DOI$$a10.1103/PhysRevLett.96.207401 000053860 0247_ $$2WOS$$aWOS:000237847000050 000053860 0247_ $$2Handle$$a2128/1456 000053860 037__ $$aPreJuSER-53860 000053860 041__ $$aeng 000053860 082__ $$a550 000053860 084__ $$2WoS$$aPhysics, Multidisciplinary 000053860 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ 000053860 245__ $$aChemical contribution to surface-enhanced Raman scattering 000053860 260__ $$aCollege Park, Md.$$bAPS$$c2006 000053860 300__ $$a207401 000053860 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000053860 3367_ $$2DataCite$$aOutput Types/Journal article 000053860 3367_ $$00$$2EndNote$$aJournal Article 000053860 3367_ $$2BibTeX$$aARTICLE 000053860 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000053860 3367_ $$2DRIVER$$aarticle 000053860 440_0 $$04925$$aPhysical Review Letters$$v96$$x0031-9007$$y20 000053860 500__ $$aRecord converted from VDB: 12.11.2012 000053860 520__ $$aWe present a new mechanism for the chemical contribution to surface-enhanced Raman scattering (SERS). The theory considers the modulation of the polarizability of a metal nanocluster or a flat metal surface by the vibrational motion of an adsorbed molecule. The modulated polarization of the substrate coupled with the incident light will contribute to the Raman scattering enhancement. We show that for a metal cluster and for a flat metal surface this new chemical contribution may enhance the Raman scattering intensity by a factor of similar to 10(2) and similar to 10(4), respectively. The new SERS process is determined by the electric field parallel to the surface of the metal substrate at the molecular binding site. 000053860 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000053860 588__ $$aDataset connected to Web of Science 000053860 650_7 $$2WoSType$$aJ 000053860 7001_ $$0P:(DE-HGF)0$$aZhao, K.$$b1 000053860 7001_ $$0P:(DE-HGF)0$$aZhang, Z. Y.$$b2 000053860 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.96.207401$$gVol. 96, p. 207401$$p207401$$q96<207401$$tPhysical review letters$$v96$$x0031-9007$$y2006 000053860 8567_ $$uhttp://hdl.handle.net/2128/1456$$uhttp://dx.doi.org/10.1103/PhysRevLett.96.207401 000053860 8564_ $$uhttps://juser.fz-juelich.de/record/53860/files/84531.pdf$$yOpenAccess 000053860 8564_ $$uhttps://juser.fz-juelich.de/record/53860/files/84531.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000053860 8564_ $$uhttps://juser.fz-juelich.de/record/53860/files/84531.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000053860 8564_ $$uhttps://juser.fz-juelich.de/record/53860/files/84531.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000053860 909CO $$ooai:juser.fz-juelich.de:53860$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000053860 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000053860 9141_ $$y2006 000053860 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000053860 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000053860 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0 000053860 970__ $$aVDB:(DE-Juel1)84531 000053860 980__ $$aVDB 000053860 980__ $$aJUWEL 000053860 980__ $$aConvertedRecord 000053860 980__ $$ajournal 000053860 980__ $$aI:(DE-Juel1)PGI-1-20110106 000053860 980__ $$aUNRESTRICTED 000053860 980__ $$aFullTexts 000053860 9801_ $$aFullTexts 000053860 981__ $$aI:(DE-Juel1)PGI-1-20110106