Journal Article PreJuSER-5528

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Implementation of a Microscopic Soil–Root Hydraulic Conductivity Drop Function in a Three-Dimensional Soil–Root Architecture Water Transfer Model

 ;  ;  ;  ;

2009
SSSA Madison, Wis.

Vadose zone journal 8, 783 - 792 () [10.2136/vzj2008.0116]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: To understand how water uptake locally affects and is affected by the soil water distribution, three-dimensional soil models need to be developed. Nowadays, fully coupled three-dimensional soil-root flow models at the plant available that simulate water flow along water potential gradients in the soil-root continuum, but the arise by the coupling of soil and root have not been investigated thoroughly. In a previous work, we introduced validated a microscopic model to be used on a coarse numerical soil grid, describing the hydraulic drop between the bulk soil and the soil-root interface within a voxel of a three-dimensional soil-root model. study, the impact of the local hydraulic conductivity drop on denser root architectures and in drier soil regions When a coarse discretization of the soil grid is used, the local hydraulic conductivity drop has a significant effect on the water potential distribution at the soil-root interface and in the xylem, especially under conditions stress where the local soil conductivity is lower than the radial root conductivity regulating root water uptake. consequence, plant stress conditions will be reached earlier than if the local conductivity drop within a soil voxel In comparison with a fine soil discretization, the soil water potential gradient calculated by including the conductivity drop at a coarser discretization does not fit the soil water potential gradient resulting from the fine discretization. Estimation of accurate water potential gradients throughout the soil requires a fine soil discretization.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Jülich Supercomputing Centre (JSC)
  2. Agrosphäre (ICG-4)
Research Program(s):
  1. Terrestrische Umwelt (P24)
  2. Scientific Computing (P41)

Appears in the scientific report 2009
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Institute Collections > JSC
Publications database

 Record created 2012-11-13, last modified 2018-02-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)