000055820 001__ 55820
000055820 005__ 20180211184651.0
000055820 0247_ $$2pmid$$apmid:17046146
000055820 0247_ $$2DOI$$a10.1016/j.bpc.2006.09.008
000055820 0247_ $$2WOS$$aWOS:000244219500013
000055820 037__ $$aPreJuSER-55820
000055820 041__ $$aeng
000055820 082__ $$a540
000055820 084__ $$2WoS$$aBiochemistry & Molecular Biology
000055820 084__ $$2WoS$$aBiophysics
000055820 084__ $$2WoS$$aChemistry, Physical
000055820 1001_ $$0P:(DE-HGF)0$$aOszlanczi, E.$$b0
000055820 245__ $$aLayer formations in the bacteria-membrane mimetic DPPE-DPPG/water system induced by sulfadiazine
000055820 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2007
000055820 300__ $$a334 - 340
000055820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000055820 3367_ $$2DataCite$$aOutput Types/Journal article
000055820 3367_ $$00$$2EndNote$$aJournal Article
000055820 3367_ $$2BibTeX$$aARTICLE
000055820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000055820 3367_ $$2DRIVER$$aarticle
000055820 440_0 $$09184$$aBiophysical Chemistry$$v125$$x0301-4622
000055820 500__ $$aRecord converted from VDB: 12.11.2012
000055820 520__ $$aThe effect of the frequently used antibiotic sulfadiazine (SD) was studied on a bacteria membrane mimetic model system by using differential scanning calorimetric (DSC), small- and wide-angle X-ray scattering (SWAXS) and freeze-fracture methods. The membrane model system consisted of dipalmitoylphosphatidylethanolamine (DPPE, 0.8 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG, 0.2 molar ratio). The SD molar ratio (relative to the lipids) was varied between 10(-3) and 1. In the presence of SD, two transitions between the gel and liquid crystalline phases appear at 60.5 degrees C and about at 65 degrees C. In the temperature domain of the gel phase, the subcell of the chain packing is strongly temperature dependent indicating the increased dominance of the hydration forces during the first transition and the location of SD molecules in the neighbourhood of the polar lipid head groups. The second transition is accompanied by the changes in the nanometer-scale layer arrangements observed by SAXS and in the mum-scale morphology observed by freeze-fracture. Above the temperature of the second transition, the SD-induced metastable structures undergo further formations to produce a more homogeneous state favoured by the geometrical packing of the cylindrical-shaped lipid molecules.
000055820 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000055820 588__ $$aDataset connected to Web of Science, Pubmed
000055820 650_2 $$2MeSH$$aBacteria: ultrastructure
000055820 650_2 $$2MeSH$$aCalorimetry, Differential Scanning
000055820 650_2 $$2MeSH$$aCell Membrane: chemistry
000055820 650_2 $$2MeSH$$aFreeze Fracturing
000055820 650_2 $$2MeSH$$aModels, Biological
000055820 650_2 $$2MeSH$$aPhase Transition
000055820 650_2 $$2MeSH$$aPhosphatidylethanolamines
000055820 650_2 $$2MeSH$$aPhosphatidylglycerols
000055820 650_2 $$2MeSH$$aSulfadiazine
000055820 650_2 $$2MeSH$$aTemperature
000055820 650_2 $$2MeSH$$aWater
000055820 650_2 $$2MeSH$$aX-Ray Diffraction
000055820 650_7 $$00$$2NLM Chemicals$$aPhosphatidylethanolamines
000055820 650_7 $$00$$2NLM Chemicals$$aPhosphatidylglycerols
000055820 650_7 $$03026-45-7$$2NLM Chemicals$$a1,2-dipalmitoyl-3-phosphatidylethanolamine
000055820 650_7 $$04537-77-3$$2NLM Chemicals$$a1,2-dipalmitoylphosphatidylglycerol
000055820 650_7 $$068-35-9$$2NLM Chemicals$$aSulfadiazine
000055820 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000055820 650_7 $$2WoSType$$aJ
000055820 65320 $$2Author$$asulfadiazine
000055820 65320 $$2Author$$aDPPE-DPPG vesicles
000055820 65320 $$2Author$$aphase separation
000055820 65320 $$2Author$$aDSC
000055820 65320 $$2Author$$asmall- and wide-angle X-ray scattering (SWAXS)
000055820 65320 $$2Author$$afreeze-fracture
000055820 7001_ $$0P:(DE-HGF)0$$aBota, A.$$b1
000055820 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, E.$$b2$$uFZJ
000055820 773__ $$0PERI:(DE-600)1496385-1$$a10.1016/j.bpc.2006.09.008$$gVol. 125, p. 334 - 340$$p334 - 340$$q125<334 - 340$$tBiophysical chemistry$$v125$$x0301-4622$$y2007
000055820 8567_ $$uhttp://dx.doi.org/10.1016/j.bpc.2006.09.008
000055820 909CO $$ooai:juser.fz-juelich.de:55820$$pVDB
000055820 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000055820 9141_ $$a$$y2007
000055820 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000055820 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000055820 970__ $$aVDB:(DE-Juel1)87027
000055820 980__ $$aVDB
000055820 980__ $$aConvertedRecord
000055820 980__ $$ajournal
000055820 980__ $$aI:(DE-Juel1)IBG-3-20101118
000055820 980__ $$aUNRESTRICTED
000055820 981__ $$aI:(DE-Juel1)IBG-3-20101118