000056189 001__ 56189
000056189 005__ 20180211182229.0
000056189 0247_ $$2DOI$$a10.1002/pssr.200701003
000056189 0247_ $$2WOS$$aWOS:000244882400018
000056189 037__ $$aPreJuSER-56189
000056189 041__ $$aeng
000056189 082__ $$a530
000056189 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000056189 084__ $$2WoS$$aPhysics, Applied
000056189 084__ $$2WoS$$aPhysics, Condensed Matter
000056189 1001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b0$$uFZJ
000056189 245__ $$aNanoscale resistive switching in SrTiO3 thin films
000056189 260__ $$aWeinheim$$bWiley-VCH$$c2007
000056189 300__ $$aR86
000056189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056189 3367_ $$2DataCite$$aOutput Types/Journal article
000056189 3367_ $$00$$2EndNote$$aJournal Article
000056189 3367_ $$2BibTeX$$aARTICLE
000056189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056189 3367_ $$2DRIVER$$aarticle
000056189 440_0 $$016681$$aPhysica Status Solidi - Rapid Research Letters$$v1$$x1862-6254
000056189 500__ $$aRecord converted from VDB: 12.11.2012
000056189 520__ $$aThe local conductivity of SrTiO3 thin films epitaxially grown on SrRuO3-buffered SrTiO3 single crystals has been investigated in detail with an atomic force microscope equipped with a conducting tip (LC-AFM). These experiments demonstrate that the conductivity of SrTiO3 thin films originates from nanoscale well-conducting filaments connecting the surface to the SrRuO3 bottom electrode. The electrical conduction of the filaments is shown to be reversible modulated over several orders of magnitude by application of an appropriate electrical field. We analyze the resistive switching by addressing individual filaments with the AFM tip as well as by scanning areas up to the mu m scale. Temperature dependent measurements reveal that resistive switching on a macroscopic scale can be traced down to the insulator-to-metal transition of the independently switchable filaments.
000056189 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000056189 588__ $$aDataset connected to Web of Science
000056189 650_7 $$2WoSType$$aJ
000056189 7001_ $$0P:(DE-Juel1)VDB5464$$aDittmann, R.$$b1$$uFZJ
000056189 7001_ $$0P:(DE-Juel1)125382$$aSpeier, W.$$b2$$uFZJ
000056189 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000056189 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.200701003$$gVol. 1, p. R86$$pR86$$q1<R86$$tPhysica status solidi / Rapid research letters$$v1$$x1862-6254$$y2007
000056189 8567_ $$uhttp://dx.doi.org/10.1002/pssr.200701003
000056189 909CO $$ooai:juser.fz-juelich.de:56189$$pVDB
000056189 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000056189 9141_ $$y2007
000056189 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056189 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000056189 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000056189 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000056189 9201_ $$0I:(DE-Juel1)VDB841$$d31.12.2009$$gUA$$kUA$$lUnternehmensentwicklung und Außenbeziehung$$x2
000056189 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x3
000056189 970__ $$aVDB:(DE-Juel1)88137
000056189 980__ $$aVDB
000056189 980__ $$aConvertedRecord
000056189 980__ $$ajournal
000056189 980__ $$aI:(DE-Juel1)PGI-7-20110106
000056189 980__ $$aI:(DE-Juel1)VDB381
000056189 980__ $$aI:(DE-Juel1)FS-20090406
000056189 980__ $$aI:(DE-82)080009_20140620
000056189 980__ $$aUNRESTRICTED
000056189 981__ $$aI:(DE-Juel1)PGI-7-20110106
000056189 981__ $$aI:(DE-Juel1)VDB381
000056189 981__ $$aI:(DE-Juel1)FS-20090406
000056189 981__ $$aI:(DE-Juel1)VDB881