000056189 001__ 56189 000056189 005__ 20180211182229.0 000056189 0247_ $$2DOI$$a10.1002/pssr.200701003 000056189 0247_ $$2WOS$$aWOS:000244882400018 000056189 037__ $$aPreJuSER-56189 000056189 041__ $$aeng 000056189 082__ $$a530 000056189 084__ $$2WoS$$aMaterials Science, Multidisciplinary 000056189 084__ $$2WoS$$aPhysics, Applied 000056189 084__ $$2WoS$$aPhysics, Condensed Matter 000056189 1001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b0$$uFZJ 000056189 245__ $$aNanoscale resistive switching in SrTiO3 thin films 000056189 260__ $$aWeinheim$$bWiley-VCH$$c2007 000056189 300__ $$aR86 000056189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000056189 3367_ $$2DataCite$$aOutput Types/Journal article 000056189 3367_ $$00$$2EndNote$$aJournal Article 000056189 3367_ $$2BibTeX$$aARTICLE 000056189 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000056189 3367_ $$2DRIVER$$aarticle 000056189 440_0 $$016681$$aPhysica Status Solidi - Rapid Research Letters$$v1$$x1862-6254 000056189 500__ $$aRecord converted from VDB: 12.11.2012 000056189 520__ $$aThe local conductivity of SrTiO3 thin films epitaxially grown on SrRuO3-buffered SrTiO3 single crystals has been investigated in detail with an atomic force microscope equipped with a conducting tip (LC-AFM). These experiments demonstrate that the conductivity of SrTiO3 thin films originates from nanoscale well-conducting filaments connecting the surface to the SrRuO3 bottom electrode. The electrical conduction of the filaments is shown to be reversible modulated over several orders of magnitude by application of an appropriate electrical field. We analyze the resistive switching by addressing individual filaments with the AFM tip as well as by scanning areas up to the mu m scale. Temperature dependent measurements reveal that resistive switching on a macroscopic scale can be traced down to the insulator-to-metal transition of the independently switchable filaments. 000056189 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000056189 588__ $$aDataset connected to Web of Science 000056189 650_7 $$2WoSType$$aJ 000056189 7001_ $$0P:(DE-Juel1)VDB5464$$aDittmann, R.$$b1$$uFZJ 000056189 7001_ $$0P:(DE-Juel1)125382$$aSpeier, W.$$b2$$uFZJ 000056189 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ 000056189 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.200701003$$gVol. 1, p. R86$$pR86$$q1<R86$$tPhysica status solidi / Rapid research letters$$v1$$x1862-6254$$y2007 000056189 8567_ $$uhttp://dx.doi.org/10.1002/pssr.200701003 000056189 909CO $$ooai:juser.fz-juelich.de:56189$$pVDB 000056189 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000056189 9141_ $$y2007 000056189 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000056189 915__ $$0StatID:(DE-HGF)0020$$aNo peer review 000056189 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0 000056189 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381 000056189 9201_ $$0I:(DE-Juel1)VDB841$$d31.12.2009$$gUA$$kUA$$lUnternehmensentwicklung und Außenbeziehung$$x2 000056189 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x3 000056189 970__ $$aVDB:(DE-Juel1)88137 000056189 980__ $$aVDB 000056189 980__ $$aConvertedRecord 000056189 980__ $$ajournal 000056189 980__ $$aI:(DE-Juel1)PGI-7-20110106 000056189 980__ $$aI:(DE-Juel1)VDB381 000056189 980__ $$aI:(DE-Juel1)FS-20090406 000056189 980__ $$aI:(DE-82)080009_20140620 000056189 980__ $$aUNRESTRICTED 000056189 981__ $$aI:(DE-Juel1)PGI-7-20110106 000056189 981__ $$aI:(DE-Juel1)VDB381 000056189 981__ $$aI:(DE-Juel1)FS-20090406 000056189 981__ $$aI:(DE-Juel1)VDB881