000056632 001__ 56632
000056632 005__ 20180211183213.0
000056632 0247_ $$2DOI$$a10.1007/s00704-006-0256-2
000056632 0247_ $$2WOS$$aWOS:000246845100010
000056632 037__ $$aPreJuSER-56632
000056632 041__ $$aeng
000056632 082__ $$a550
000056632 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000056632 1001_ $$0P:(DE-HGF)0$$aWeber, S.$$b0
000056632 245__ $$aAccuracy of soil heat flux plate measurements in coarse substrates - Field measurements versus a laboratory test
000056632 260__ $$aWien [u.a.]$$bSpringer$$c2007
000056632 300__ $$a109 - 114
000056632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056632 3367_ $$2DataCite$$aOutput Types/Journal article
000056632 3367_ $$00$$2EndNote$$aJournal Article
000056632 3367_ $$2BibTeX$$aARTICLE
000056632 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056632 3367_ $$2DRIVER$$aarticle
000056632 440_0 $$017042$$aTheoretical and Applied Climatology$$v89$$x1434-4483
000056632 500__ $$aRecord converted from VDB: 12.11.2012
000056632 520__ $$aThe in-situ performance of heat flux plates within coarse porous substrates might be limited due to poor contact between plate and substrate. We tested this behaviour with a simple laboratory set-up. Two test substrates were placed above a reference material of known thermal conductivity between a warm and a cold plate to establish a vertical heat flux. The temperature gradients and the response of a soil heat flux plate were measured. By means of the Fourier law of heat conduction the thermal conductivity of each test substrate was calculated, thus incorporating all heat transfer within the volume and representing the "effective" conductivity. The laboratory method had an accuracy of up to 7% (13% for a smaller set-up). In comparison, heat flux plate-derived heat fluxes showed errors of up to 26%. Use of heat flux plates in coarse substrates is not recommended without additional measurements.
000056632 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000056632 588__ $$aDataset connected to Web of Science
000056632 650_7 $$2WoSType$$aJ
000056632 7001_ $$0P:(DE-Juel1)129461$$aGraf, A.$$b1$$uFZJ
000056632 7001_ $$0P:(DE-HGF)0$$aHeusinkveld, B. G.$$b2
000056632 773__ $$0PERI:(DE-600)1463177-5$$a10.1007/s00704-006-0256-2$$gVol. 89, p. 109 - 114$$p109 - 114$$q89<109 - 114$$tTheoretical and applied climatology$$v89$$x1434-4483$$y2007
000056632 8567_ $$uhttp://dx.doi.org/10.1007/s00704-006-0256-2
000056632 909CO $$ooai:juser.fz-juelich.de:56632$$pVDB
000056632 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000056632 9141_ $$y2007
000056632 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056632 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000056632 970__ $$aVDB:(DE-Juel1)88904
000056632 980__ $$aVDB
000056632 980__ $$aConvertedRecord
000056632 980__ $$ajournal
000056632 980__ $$aI:(DE-Juel1)IBG-3-20101118
000056632 980__ $$aUNRESTRICTED
000056632 981__ $$aI:(DE-Juel1)IBG-3-20101118