000057452 001__ 57452
000057452 005__ 20240708132647.0
000057452 0247_ $$2DOI$$a10.1524/zksu.2006.suppl_23.299
000057452 0247_ $$2WOS$$aWOS:000238608100007
000057452 037__ $$aPreJuSER-57452
000057452 041__ $$aeng
000057452 082__ $$a540
000057452 084__ $$2WoS$$aCrystallography
000057452 1001_ $$0P:(DE-Juel1)130459$$aFischer, W.$$b0$$uFZJ
000057452 245__ $$aResidual stress mapping in the zirconia electrolyte layer of a high-temperature solid oxide fuel cell
000057452 260__ $$aMünchen$$bOldenbourg$$c2006
000057452 300__ $$a299 - 304
000057452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057452 3367_ $$2DataCite$$aOutput Types/Journal article
000057452 3367_ $$00$$2EndNote$$aJournal Article
000057452 3367_ $$2BibTeX$$aARTICLE
000057452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057452 3367_ $$2DRIVER$$aarticle
000057452 440_0 $$06017$$aZeitschrift für Kristallographie$$v$$x0044-2968$$ySuppl. 23
000057452 500__ $$aRecord converted from VDB: 12.11.2012
000057452 520__ $$aX-ray residual stress evaluation has been employed to measure stress distributions in the electrolyte layer of a single anode-supported planar solid oxide fuel cell at several manufacturing steps. The mainly thermal residual stress in the about 10 gm thick electrolyte layer is about -560 MPa at room temperature and constant across the whole cell plate. Chemical reduction of the anode leads to a slight reduction of the compressive stress to -520 MPa, still ensuring that the electrolyte layer remains under compression up to operation temperature of about 800 degrees C.
000057452 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000057452 588__ $$aDataset connected to Web of Science
000057452 650_7 $$2WoSType$$aJ
000057452 65320 $$2Author$$apowder diffraction
000057452 65320 $$2Author$$aresidual stress mapping
000057452 65320 $$2Author$$asolid oxide fuel cell
000057452 65320 $$2Author$$ayttria-stabilized zirconia
000057452 7001_ $$0P:(DE-Juel1)VDB42782$$aBlass, G.$$b1$$uFZJ
000057452 773__ $$0PERI:(DE-600)2546071-7$$a10.1524/zksu.2006.suppl_23.299$$gp. 299 - 304$$p299 - 304$$q299 - 304$$tZeitschrift für Kristallographie / Crystalline materials$$x0044-2968$$y2006
000057452 8567_ $$uhttp://dx.doi.org/10.1524/zksu.2006.suppl_23.299
000057452 909CO $$ooai:juser.fz-juelich.de:57452$$pVDB
000057452 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000057452 9141_ $$aNachtrag$$y2006
000057452 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057452 9201_ $$0I:(DE-Juel1)VDB5$$d31.12.2006$$gIWV$$kIWV-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000057452 970__ $$aVDB:(DE-Juel1)90367
000057452 980__ $$aVDB
000057452 980__ $$aConvertedRecord
000057452 980__ $$ajournal
000057452 980__ $$aI:(DE-Juel1)IEK-1-20101013
000057452 980__ $$aUNRESTRICTED
000057452 981__ $$aI:(DE-Juel1)IMD-2-20101013
000057452 981__ $$aI:(DE-Juel1)IMD-2-20101013
000057452 981__ $$aI:(DE-Juel1)IEK-1-20101013