001     57723
005     20180211175451.0
024 7 _ |2 DOI
|a 10.1080/10584580701249413
024 7 _ |2 WOS
|a WOS:000246303100014
037 _ _ |a PreJuSER-57723
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Schroeder, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB3130
245 _ _ |a A model for a resistive switch memory cell with rechargeable space charge
260 _ _ |a London [u.a.]
|b Taylor & Francis
|c 2007
300 _ _ |a 113 - 120
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Integrated Ferroelectrics
|x 1058-4587
|0 2659
|v 90
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a An advanced leakage current model combining the electronic carrier injection/ejection at the electrode interfaces (described by thermionic emission) with the film conduction properties of a thin dielectric film (modelled as wide band gap semiconductor) is used to describe the current-voltage (IN) curve of a flash-like resistive switch memory cell. Such a cell consists of a metal-insulator-metal capacitor structure with some embedded charge storage elements within the dielectric, e.g. a floating electrode (like in the gate of a "Flash") or some metallic ions or clusters, which can be charged or discharged by an applied voltage or current or by a "redox" reaction. The resulting different conductance levels can be used for a resistive switching memory cell. This contribution presents calculated simulation results on IN curves in dependence on polarity and concentration of the stored charge as well as on other parameters such as dielectric constant, background homogeneous defect densities in the dielectric and electrode properties. These parameters show a large influence on the switching ratio S = R(high)/R(low), an important parameter for the application in a device.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a resistive switching
653 2 0 |2 Author
|a organic dielectric
653 2 0 |2 Author
|a high permittivity oxides
653 2 0 |2 Author
|a memory
653 2 0 |2 Author
|a model simulation
653 2 0 |2 Author
|a leakage current
773 _ _ |a 10.1080/10584580701249413
|g Vol. 90, p. 113 - 120
|p 113 - 120
|q 90<113 - 120
|0 PERI:(DE-600)2037916-X
|t Integrated ferroelectrics
|v 90
|y 2007
|x 1058-4587
856 7 _ |u http://dx.doi.org/10.1080/10584580701249413
909 C O |o oai:juser.fz-juelich.de:57723
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-6
|l Elektronische Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)90816
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21