001     58105
005     20200423204515.0
024 7 _ |a 10.1063/1.2401047
|2 DOI
024 7 _ |a WOS:000243157900070
|2 WOS
024 7 _ |a 2128/17154
|2 Handle
037 _ _ |a PreJuSER-58105
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Gerber, P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Composition influences on the electrical and electromechanical properties of lead zirconate titanate thin films
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2006
300 _ _ |a 124105-1 - 124105-8
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Applied Physics
|x 0021-8979
|0 3051
|y 12
|v 100
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The influences of the Zr content on the structural, electrical, and electromechanical properties of Pb[Zr-(x),Ti(1-x)]O-3 [PZT(x/1-x)] thin films are investigated in detail. Additionally to measuring all major characteristics of the samples, the electromechanical large-signal behavior is modeled. Raising the Zr content increases the unit cell size and forces the preferred phase to become rhombohedral above the morphotropic phase boundary (MPB). The increased unit cell size changes the switching behavior and increases the intrinsic behavior of the unit cells. The intrinsic behavior is reduced by the phase change, which also introduces non-180 degrees domain wall motion, improving the large-signal strain. Additionally, the domain configuration in saturation is more stable further away from the MPB. Finally, the most suitable materials will be selected for different applications. (c) 2006 American Institute of Physics.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Böttger, U.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1063/1.2401047
|g Vol. 100, p. 124105-1 - 124105-8
|p 124105-1 - 124105-8
|q 100<124105-1 - 124105-8
|0 PERI:(DE-600)1476463-5
|t Journal of applied physics
|v 100
|y 2006
|x 0021-8979
856 7 _ |u http://dx.doi.org/10.1063/1.2401047
856 4 _ |u https://juser.fz-juelich.de/record/58105/files/1.2401047.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/58105/files/1.2401047.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/58105/files/1.2401047.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/58105/files/1.2401047.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/58105/files/1.2401047.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:58105
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2006
|g IFF
|k IFF-IEM
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)91322
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21