Journal Article PreJuSER-59065

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems

 ;  ;

2007
Springer Heidelberg [u.a.]

Journal of experimental and theoretical physics 104, 96 - 110 () [10.1134/S1063776107010116]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The effect of an external bias voltage and spatial variations of the surface potential on the damping of cantilever vibrations in an atomic force microscope (AFM) is considered. The damping is due to an electrostatic friction that arises due to dissipation of the energy of an electromagnetic field generated in the sample by oscillating static charges induced on the surface of the AFM probe tip by the bias voltage or spatial variations of the surface potential. A similar effect appears when the tip is oscillating in an electrostatic field created by charged defects present in the dielectric sample. The electrostatic friction is compared to the van der Waals (vdW) friction between closely spaced bodies, which is caused by a fluctuating electromagnetic field related to the quantum and thermal fluctuations of current density inside the bodies. It is shown that the electrostatic friction and the vdW friction can be strongly enhanced in the presence of dielectric films or two-dimensional (2D) structures-such as a 2D electron system or an incommensurate layer of adsorbed ions exhibiting acoustic oscillations-on the probe tip and sample surfaces. It is also shown that the damping of cantilever oscillations caused by the electrostatic friction in the presence of such 2D structures can have the same order of magnitude and the same dependence on the distance as observed in experiment by Stipe et al. [Phys. Rev. Lett. 87, 096801 (2001)]. At small distances, the vdW friction can be large enough to be measured in experiment. In interpreting the experimental data that obey a quadratic dependence on the bias voltage, one can reject a phonon mechanism according to which the friction depends on the fourth power of the voltage.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Research Program(s):
  1. Kondensierte Materie (P54)

Appears in the scientific report 2007
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2012-11-13, letzte Änderung am 2018-02-11



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)