000061270 001__ 61270 000061270 005__ 20180211183331.0 000061270 0247_ $$2DOI$$a10.1016/j.jallcom.2005.12.133 000061270 0247_ $$2WOS$$aWOS:000252737500002 000061270 037__ $$aPreJuSER-61270 000061270 041__ $$aeng 000061270 082__ $$a670 000061270 084__ $$2WoS$$aChemistry, Physical 000061270 084__ $$2WoS$$aMaterials Science, Multidisciplinary 000061270 084__ $$2WoS$$aMetallurgy & Metallurgical Engineering 000061270 1001_ $$0P:(DE-Juel1)VDB26957$$aRüdiger, A.$$b0$$uFZJ 000061270 245__ $$aSize effects in ferroelectric nanostructures 000061270 260__ $$aLausanne$$bElsevier$$c2008 000061270 300__ $$a 000061270 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000061270 3367_ $$2DataCite$$aOutput Types/Journal article 000061270 3367_ $$00$$2EndNote$$aJournal Article 000061270 3367_ $$2BibTeX$$aARTICLE 000061270 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000061270 3367_ $$2DRIVER$$aarticle 000061270 440_0 $$03020$$aJournal of Alloys and Compounds$$v449$$x0925-8388$$y1 000061270 500__ $$aRecord converted from VDB: 12.11.2012 000061270 520__ $$aFerroelectrics are among the most advanced candidates of fast non-volatile memory materials. How do the properties of the commonly used perovskites such as PbTiO3, Pb(ZrxTi1-x)O-3 (PZT) and BaTiO3 change with size? Is there a fundamental limit showing up below which ferroelectricity irrevocably ceases? While the operating voltage as the predominant driving force for commercial applications shifted the thickness down to a few unit cells, ferroelectrics are now on the verge of true nanoscale integration of laterally confined structures. Top-down, bottom-up approaches and their combination provide samples far below 100 nm and indicate that the interaction of electrode and ferroelectric becomes increasingly relevant in terms of strain, screening of the depolarization field and fatigue resistance. As the qualitative understanding of nanoscale ferroelectricity advances the ferroelectric limit appears to be below 10 nm thus paving the road for further miniaturization. (C) 2007 Published by Elsevier B.V. 000061270 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000061270 588__ $$aDataset connected to Web of Science 000061270 650_7 $$2WoSType$$aJ 000061270 65320 $$2Author$$aferroelectric 000061270 65320 $$2Author$$apiezoelectric 000061270 65320 $$2Author$$aatomic force microscopy 000061270 65320 $$2Author$$aFeRAM 000061270 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$uFZJ 000061270 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2005.12.133$$gVol. 449$$q449$$tJournal of alloys and compounds$$v449$$x0925-8388$$y2008 000061270 8567_ $$uhttp://dx.doi.org/10.1016/j.jallcom.2005.12.133 000061270 909CO $$ooai:juser.fz-juelich.de:61270$$pVDB 000061270 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000061270 9141_ $$y2008 000061270 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000061270 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0 000061270 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000061270 970__ $$aVDB:(DE-Juel1)96124 000061270 980__ $$aVDB 000061270 980__ $$aConvertedRecord 000061270 980__ $$ajournal 000061270 980__ $$aI:(DE-Juel1)PGI-7-20110106 000061270 980__ $$aI:(DE-82)080009_20140620 000061270 980__ $$aUNRESTRICTED 000061270 981__ $$aI:(DE-Juel1)PGI-7-20110106 000061270 981__ $$aI:(DE-Juel1)VDB881