000061270 001__ 61270
000061270 005__ 20180211183331.0
000061270 0247_ $$2DOI$$a10.1016/j.jallcom.2005.12.133
000061270 0247_ $$2WOS$$aWOS:000252737500002
000061270 037__ $$aPreJuSER-61270
000061270 041__ $$aeng
000061270 082__ $$a670
000061270 084__ $$2WoS$$aChemistry, Physical
000061270 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000061270 084__ $$2WoS$$aMetallurgy & Metallurgical Engineering
000061270 1001_ $$0P:(DE-Juel1)VDB26957$$aRüdiger, A.$$b0$$uFZJ
000061270 245__ $$aSize effects in ferroelectric nanostructures
000061270 260__ $$aLausanne$$bElsevier$$c2008
000061270 300__ $$a
000061270 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061270 3367_ $$2DataCite$$aOutput Types/Journal article
000061270 3367_ $$00$$2EndNote$$aJournal Article
000061270 3367_ $$2BibTeX$$aARTICLE
000061270 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061270 3367_ $$2DRIVER$$aarticle
000061270 440_0 $$03020$$aJournal of Alloys and Compounds$$v449$$x0925-8388$$y1
000061270 500__ $$aRecord converted from VDB: 12.11.2012
000061270 520__ $$aFerroelectrics are among the most advanced candidates of fast non-volatile memory materials. How do the properties of the commonly used perovskites such as PbTiO3, Pb(ZrxTi1-x)O-3 (PZT) and BaTiO3 change with size? Is there a fundamental limit showing up below which ferroelectricity irrevocably ceases? While the operating voltage as the predominant driving force for commercial applications shifted the thickness down to a few unit cells, ferroelectrics are now on the verge of true nanoscale integration of laterally confined structures. Top-down, bottom-up approaches and their combination provide samples far below 100 nm and indicate that the interaction of electrode and ferroelectric becomes increasingly relevant in terms of strain, screening of the depolarization field and fatigue resistance. As the qualitative understanding of nanoscale ferroelectricity advances the ferroelectric limit appears to be below 10 nm thus paving the road for further miniaturization. (C) 2007 Published by Elsevier B.V.
000061270 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000061270 588__ $$aDataset connected to Web of Science
000061270 650_7 $$2WoSType$$aJ
000061270 65320 $$2Author$$aferroelectric
000061270 65320 $$2Author$$apiezoelectric
000061270 65320 $$2Author$$aatomic force microscopy
000061270 65320 $$2Author$$aFeRAM
000061270 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$uFZJ
000061270 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2005.12.133$$gVol. 449$$q449$$tJournal of alloys and compounds$$v449$$x0925-8388$$y2008
000061270 8567_ $$uhttp://dx.doi.org/10.1016/j.jallcom.2005.12.133
000061270 909CO $$ooai:juser.fz-juelich.de:61270$$pVDB
000061270 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000061270 9141_ $$y2008
000061270 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061270 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000061270 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000061270 970__ $$aVDB:(DE-Juel1)96124
000061270 980__ $$aVDB
000061270 980__ $$aConvertedRecord
000061270 980__ $$ajournal
000061270 980__ $$aI:(DE-Juel1)PGI-7-20110106
000061270 980__ $$aI:(DE-82)080009_20140620
000061270 980__ $$aUNRESTRICTED
000061270 981__ $$aI:(DE-Juel1)PGI-7-20110106
000061270 981__ $$aI:(DE-Juel1)VDB881