000061534 001__ 61534
000061534 005__ 20240708133628.0
000061534 0247_ $$2DOI$$a10.1016/j.spmi.2007.04.002
000061534 0247_ $$2WOS$$aWOS:000250271200009
000061534 037__ $$aPreJuSER-61534
000061534 041__ $$aeng
000061534 082__ $$a530
000061534 084__ $$2WoS$$aPhysics, Condensed Matter
000061534 1001_ $$0P:(DE-Juel1)130219$$aBittkau, K.$$b0$$uFZJ
000061534 245__ $$aNear-field study of optical modes in randomly textured ZnO thin films
000061534 260__ $$aOxford [u.a.]$$bElsevier Science, Academic Press$$c2007
000061534 300__ $$a47 - 51
000061534 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061534 3367_ $$2DataCite$$aOutput Types/Journal article
000061534 3367_ $$00$$2EndNote$$aJournal Article
000061534 3367_ $$2BibTeX$$aARTICLE
000061534 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061534 3367_ $$2DRIVER$$aarticle
000061534 440_0 $$08482$$aSuperlattices and Microstructures$$v42$$x0749-6036
000061534 500__ $$aRecord converted from VDB: 12.11.2012
000061534 520__ $$aWe report on near-field scanning optical microscopy measurements on randomly textured ZnO thin films. These films are commonly used as transparent conducting oxide in thin-film solar cells. Textured interfaces are used to increase the scattering of light, which leads to a better light trapping in the solar cell. Here, both the topography and the local transmission are measured with a tapered fiber tip with very high spatial resolution. By varying the distance of the tip and the wavelength of the incident light, the optical profile is visualized and reveals a strong confinement of light on a subwavelength scale which corresponds to ridges in the surface structure. The confinement of light results from guided optical modes in the ZnO which are accompanied by a modulated evanescent field in air. No corresponding structure to this modulation is found in the topography. These results give new insight for further improvement of light trapping in solar cells. (c) 2007 Elsevier Ltd. All rights reserved.
000061534 536__ $$0G:(DE-Juel1)FUEK401$$2G:(DE-HGF)$$aErneuerbare Energien$$cP11$$x0
000061534 588__ $$aDataset connected to Web of Science
000061534 650_7 $$2WoSType$$aJ
000061534 65320 $$2Author$$anear-field microscopy
000061534 65320 $$2Author$$athin-film solar cell
000061534 65320 $$2Author$$aZnO
000061534 65320 $$2Author$$arandom surface
000061534 65320 $$2Author$$alight trapping
000061534 7001_ $$0P:(DE-Juel1)VDB4964$$aCarius, R.$$b1$$uFZJ
000061534 773__ $$0PERI:(DE-600)1471791-8$$a10.1016/j.spmi.2007.04.002$$gVol. 42, p. 47 - 51$$p47 - 51$$q42<47 - 51$$tSuperlattices and microstructures$$v42$$x0749-6036$$y2007
000061534 8567_ $$uhttp://dx.doi.org/10.1016/j.spmi.2007.04.002
000061534 909CO $$ooai:juser.fz-juelich.de:61534$$pVDB
000061534 9131_ $$0G:(DE-Juel1)FUEK401$$bEnergie$$kP11$$lErneuerbare Energien$$vErneuerbare Energien$$x0
000061534 9141_ $$aNachtrag$$y2007
000061534 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061534 9201_ $$0I:(DE-Juel1)VDB813$$d30.09.2010$$gIEF$$kIEF-5$$lPhotovoltaik$$x1
000061534 970__ $$aVDB:(DE-Juel1)96740
000061534 980__ $$aVDB
000061534 980__ $$aConvertedRecord
000061534 980__ $$ajournal
000061534 980__ $$aI:(DE-Juel1)IEK-5-20101013
000061534 980__ $$aUNRESTRICTED
000061534 981__ $$aI:(DE-Juel1)IMD-3-20101013
000061534 981__ $$aI:(DE-Juel1)IEK-5-20101013