000006194 001__ 6194
000006194 005__ 20180208203724.0
000006194 0247_ $$2DOI$$a10.1109/LED.2009.2024623
000006194 0247_ $$2WOS$$aWOS:000268342400029
000006194 0247_ $$2ISSN$$a0741-3106
000006194 037__ $$aPreJuSER-6194
000006194 041__ $$aeng
000006194 082__ $$a620
000006194 084__ $$2WoS$$aEngineering, Electrical & Electronic
000006194 1001_ $$0P:(DE-HGF)0$$aSymanczyk, R.$$b0
000006194 245__ $$aInvestigation of the reliability behavior of conductive-bridging memory cells
000006194 260__ $$aNew York, NY$$bIEEE$$c2009
000006194 300__ $$a876 - 878
000006194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000006194 3367_ $$2DataCite$$aOutput Types/Journal article
000006194 3367_ $$00$$2EndNote$$aJournal Article
000006194 3367_ $$2BibTeX$$aARTICLE
000006194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000006194 3367_ $$2DRIVER$$aarticle
000006194 440_0 $$02464$$aIEEE Electron Device Letters$$v30$$x0741-3106
000006194 500__ $$aRecord converted from VDB: 12.11.2012
000006194 520__ $$aConductive-bridging memory can store information as different resistance states even when not powered. In order to check reliability challenges for nonvolatile-memory applications, the data retention has to be tested carefully. This letter describes a new test scheme using electrical bias for acceleration and enables the fast recording of such detailed information. Experimental data for memory devices based on Ag:GeS2 as the active-matrix material are presented. Excellent stability and reproducibility of the resistance states for more than 300 cycles are demonstrated in the temperature range from 25 degrees C to 85 degrees C. Based on the calculated activation energy, ten years of data retention is extrapolated.
000006194 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000006194 588__ $$aDataset connected to Web of Science
000006194 650_7 $$2WoSType$$aJ
000006194 65320 $$2Author$$aCBRAM
000006194 65320 $$2Author$$achalcogenide
000006194 65320 $$2Author$$anonvolatile memory
000006194 65320 $$2Author$$areliability
000006194 65320 $$2Author$$aretention
000006194 7001_ $$0P:(DE-Juel1)130570$$aBruchhaus, R.$$b1$$uFZJ
000006194 7001_ $$0P:(DE-HGF)0$$aDittrich, R.$$b2
000006194 7001_ $$0P:(DE-HGF)0$$aKund, M.$$b3
000006194 773__ $$0PERI:(DE-600)2034325-5$$a10.1109/LED.2009.2024623$$gVol. 30, p. 876 - 878$$p876 - 878$$q30<876 - 878$$tIEEE Electron Device Letters$$v30$$x0741-3106$$y2009
000006194 8567_ $$uhttp://dx.doi.org/10.1109/LED.2009.2024623
000006194 909CO $$ooai:juser.fz-juelich.de:6194$$pVDB
000006194 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000006194 9141_ $$y2009
000006194 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000006194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000006194 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000006194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000006194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000006194 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000006194 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000006194 970__ $$aVDB:(DE-Juel1)114338
000006194 980__ $$aVDB
000006194 980__ $$aConvertedRecord
000006194 980__ $$ajournal
000006194 980__ $$aI:(DE-Juel1)PGI-7-20110106
000006194 980__ $$aI:(DE-82)080009_20140620
000006194 980__ $$aUNRESTRICTED
000006194 981__ $$aI:(DE-Juel1)PGI-7-20110106
000006194 981__ $$aI:(DE-Juel1)VDB881