001     6194
005     20180208203724.0
024 7 _ |2 DOI
|a 10.1109/LED.2009.2024623
024 7 _ |2 WOS
|a WOS:000268342400029
024 7 _ |2 ISSN
|a 0741-3106
037 _ _ |a PreJuSER-6194
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
100 1 _ |a Symanczyk, R.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Investigation of the reliability behavior of conductive-bridging memory cells
260 _ _ |c 2009
|a New York, NY
|b IEEE
300 _ _ |a 876 - 878
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a IEEE Electron Device Letters
|x 0741-3106
|0 2464
|v 30
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Conductive-bridging memory can store information as different resistance states even when not powered. In order to check reliability challenges for nonvolatile-memory applications, the data retention has to be tested carefully. This letter describes a new test scheme using electrical bias for acceleration and enables the fast recording of such detailed information. Experimental data for memory devices based on Ag:GeS2 as the active-matrix material are presented. Excellent stability and reproducibility of the resistance states for more than 300 cycles are demonstrated in the temperature range from 25 degrees C to 85 degrees C. Based on the calculated activation energy, ten years of data retention is extrapolated.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a CBRAM
653 2 0 |2 Author
|a chalcogenide
653 2 0 |2 Author
|a nonvolatile memory
653 2 0 |2 Author
|a reliability
653 2 0 |2 Author
|a retention
700 1 _ |a Bruchhaus, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)130570
700 1 _ |a Dittrich, R.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Kund, M.
|b 3
|0 P:(DE-HGF)0
773 _ _ |0 PERI:(DE-600)2034325-5
|a 10.1109/LED.2009.2024623
|g Vol. 30, p. 876 - 878
|p 876 - 878
|q 30<876 - 878
|t IEEE Electron Device Letters
|v 30
|x 0741-3106
|y 2009
856 7 _ |u http://dx.doi.org/10.1109/LED.2009.2024623
909 C O |o oai:juser.fz-juelich.de:6194
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)114338
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21