TY  - JOUR
AU  - Kügeler, C.
AU  - Böttger, U.
AU  - Schneller, T.
TI  - Electromechanical properties of lanthanum-doped lead hafnate titanate thin films for integrated piezoelectric MEMS applications
JO  - Applied physics / A
VL  - 94
SN  - 0947-8396
CY  - Berlin
PB  - Springer
M1  - PreJuSER-6199
SP  - 739 - 743
PY  - 2009
N1  - Record converted from VDB: 12.11.2012
AB  - This paper focuses on the deposition and electromechanical characterization of lanthanum-doped lead hafnate titanate (PLHT) thin films as key material in piezoelectric microelectromechanical systems (pMEMS). PLHT (x/30/70) and PLHT(x/45/55) films with a thickness between 150 nm and 250 nm were deposited by chemical solution deposition (CSD). Thereby x varies between 0 and 10% La content. The electrical characterization shows that undoped (x=0) PLHT exhibit ferroelectric behavior similar to PZT of the same composition. La doping results in reduced ferroelectric properties and also affects the electromechanical properties. Measurements using a double beam laser interferometer yield a piezoelectric coefficient d (33) of 60 pm/V, which stays constant with an increasing electric field. This leads to a linear displacement compared to undoped PLHT or conventional PZT films used for MEMS applications.
KW  - J (WoSType)
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000263069700005
DO  - DOI:10.1007/s00339-008-5045-6
UR  - https://juser.fz-juelich.de/record/6199
ER  -