000062049 001__ 62049
000062049 005__ 20180211174929.0
000062049 0247_ $$2DOI$$a10.1016/j.ecolmodel.2008.02.007
000062049 0247_ $$2WOS$$aWOS:000256608000015
000062049 037__ $$aPreJuSER-62049
000062049 041__ $$aeng
000062049 082__ $$a570
000062049 084__ $$2WoS$$aEcology
000062049 1001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b0$$uFZJ
000062049 245__ $$aMultiyear heterotrophic soil respiration: Evaluation of a coupled CO2 transport and carbon turnover model
000062049 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2008
000062049 300__ $$a271 - 283
000062049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000062049 3367_ $$2DataCite$$aOutput Types/Journal article
000062049 3367_ $$00$$2EndNote$$aJournal Article
000062049 3367_ $$2BibTeX$$aARTICLE
000062049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000062049 3367_ $$2DRIVER$$aarticle
000062049 440_0 $$011081$$aEcological Modelling$$v214$$x0304-3800
000062049 500__ $$aRecord converted from VDB: 12.11.2012
000062049 520__ $$aModelling of soil respiration plays an important role in the prediction of climate change. Soil respiration is usually divided in a fraction originating from root respiration and a heterotrophic fraction originating from microbial decomposition of soil organic carbon. This paper reports on the coupling of an one-dimensional water, heat and CO2 flux model (SOILCO2) with a pool concept of carbon turnover (RothC) for the prediction of soil heterotrophic respiration. In order to test this coupled model, it was applied to a bare soil experimental plot located in Bornim, Germany. Soil temperature and soil water content measurements were used for comparison with the respective model predictions. An 8 years data set Of CO2 efflux measurements, covering a broad range of atmospheric conditions, was used to evaluate the model. In a first step we quantified the improvement of the CO2 efflux prediction due to the coupling of the flux model with a pool concept of carbon turnover. The humus pool decomposition rate constant and its soil water content dependent reduction were derived from the first 5 years Of CO2 efflux measurements using inverse modelling. The following 3 years of measurements were used to validate the model. The overall model performance Of CO2 efflux predictions was acceptable with the measured and simulated mean daily respiration being 0.861 and 0.868 g C m(-2) d(-1), respectively, and a mean absolute difference between modelled and measured rates of 0.21 g C m(-2) d(-1). The inverse estimation of the humus decomposition rate constant resulted in a value of 0.04 year(-1), which is higher than the default value in RothC. This is attributed to the agricultural practice during the experiment. (c) 2008 Elsevier B.V. All rights reserved.
000062049 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000062049 588__ $$aDataset connected to Web of Science
000062049 650_7 $$2WoSType$$aJ
000062049 65320 $$2Author$$asoil organic carbon
000062049 65320 $$2Author$$aheterotrophic soil respiration
000062049 65320 $$2Author$$amodel
000062049 65320 $$2Author$$aSOILCO2
000062049 65320 $$2Author$$aRothC
000062049 7001_ $$0P:(DE-Juel1)VDB72388$$aHellebrand, H. J.$$b1$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)VDB62716$$aBauer, J.$$b2$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b3$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)VDB57645$$aSimunek, J.$$b4$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b5$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)129461$$aGraf, A.$$b6$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b7$$uFZJ
000062049 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b8$$uFZJ
000062049 773__ $$0PERI:(DE-600)2000879-X$$a10.1016/j.ecolmodel.2008.02.007$$gVol. 214, p. 271 - 283$$p271 - 283$$q214<271 - 283$$tEcological modelling$$v214$$x0304-3800$$y2008
000062049 8567_ $$uhttp://dx.doi.org/10.1016/j.ecolmodel.2008.02.007
000062049 909CO $$ooai:juser.fz-juelich.de:62049$$pVDB
000062049 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000062049 9141_ $$y2008
000062049 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000062049 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000062049 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2
000062049 970__ $$aVDB:(DE-Juel1)98046
000062049 980__ $$aVDB
000062049 980__ $$aConvertedRecord
000062049 980__ $$ajournal
000062049 980__ $$aI:(DE-Juel1)IBG-3-20101118
000062049 980__ $$aI:(DE-Juel1)VDB1045
000062049 980__ $$aUNRESTRICTED
000062049 981__ $$aI:(DE-Juel1)IBG-3-20101118
000062049 981__ $$aI:(DE-Juel1)VDB1045