Journal Article PreJuSER-62049

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multiyear heterotrophic soil respiration: Evaluation of a coupled CO2 transport and carbon turnover model

 ;  ;  ;  ;  ;  ;  ;  ;

2008
Elsevier Science Amsterdam [u.a.]

Ecological modelling 214, 271 - 283 () [10.1016/j.ecolmodel.2008.02.007]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Modelling of soil respiration plays an important role in the prediction of climate change. Soil respiration is usually divided in a fraction originating from root respiration and a heterotrophic fraction originating from microbial decomposition of soil organic carbon. This paper reports on the coupling of an one-dimensional water, heat and CO2 flux model (SOILCO2) with a pool concept of carbon turnover (RothC) for the prediction of soil heterotrophic respiration. In order to test this coupled model, it was applied to a bare soil experimental plot located in Bornim, Germany. Soil temperature and soil water content measurements were used for comparison with the respective model predictions. An 8 years data set Of CO2 efflux measurements, covering a broad range of atmospheric conditions, was used to evaluate the model. In a first step we quantified the improvement of the CO2 efflux prediction due to the coupling of the flux model with a pool concept of carbon turnover. The humus pool decomposition rate constant and its soil water content dependent reduction were derived from the first 5 years Of CO2 efflux measurements using inverse modelling. The following 3 years of measurements were used to validate the model. The overall model performance Of CO2 efflux predictions was acceptable with the measured and simulated mean daily respiration being 0.861 and 0.868 g C m(-2) d(-1), respectively, and a mean absolute difference between modelled and measured rates of 0.21 g C m(-2) d(-1). The inverse estimation of the humus decomposition rate constant resulted in a value of 0.04 year(-1), which is higher than the default value in RothC. This is attributed to the agricultural practice during the experiment. (c) 2008 Elsevier B.V. All rights reserved.

Keyword(s): J ; soil organic carbon (auto) ; heterotrophic soil respiration (auto) ; model (auto) ; SOILCO2 (auto) ; RothC (auto)

Classification:

Note: Record converted from VDB: 12.11.2012

Research Program(s):
  1. Terrestrische Umwelt (P24)

Appears in the scientific report 2008
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-11



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)