001     6444
005     20200402205650.0
024 7 _ |2 pmid
|a pmid:19821476
024 7 _ |2 DOI
|a 10.1002/cphc.200900645
024 7 _ |2 WOS
|a WOS:000272115200011
037 _ _ |a PreJuSER-6444
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Monzel, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB75022
245 _ _ |a Probing Bio-Membrane Dynamics by Dual-Wavelength Reflection Interference Contrast Microscopy
260 _ _ |a Weinheim
|b Wiley-VCH Verl.
|c 2009
300 _ _ |a 2828 - 2838
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a ChemPhysChem
|x 1439-4235
|0 10582
|y 16
|v 10
500 _ _ |a We thank Dr. Norbert Kirchgessner and Sebastian Houben for helpful discussions on Matlab, Norbert Kirchgessner and Werner Hurttlen for the implementation of the camera calibration setup, and Nico Hampe for the fabrication of microstructured SiO2 wafers. One of the authors (C. M.) is grateful for the financial support by the Bonn-Cologne Graduate School.
520 _ _ |a We present an improved analysis of reflection interference contrast microscopy (RICM) images, recorded to investigate model membrane systems that mimic cell adhesion. The model systems were giant unilamellar vesicles (GUV) adhering via specific ligand-receptor interactions to supported lipid bilayers (SLB) or to patterns of receptors. Conventional RICM and dual-wavelength RICM (DW-RICM) were applied to measure absolute optical distances between the biomembranes and planar substrates. We developed algorithms for a straightforward implementation of an automated, time-resolved reconstruction of the membrane conformations from RICM/DW-RICM images, taking into account all the interfaces in the system and blurring of the data due to camera noise. Finally, we demonstrate the validity and usefulness of this new approach by analyzing the topography and fluctuations of a bound membrane in the steady state and its dynamic adaptation to osmotic pressure changes. These measurements clearly show that macroscopic membrane flow through tightly adhered area is possible in our system.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Microscopy, Interference
650 _ 2 |2 MeSH
|a Molecular Dynamics Simulation
650 _ 2 |2 MeSH
|a Osmotic Pressure
650 _ 2 |2 MeSH
|a Unilamellar Liposomes: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Unilamellar Liposomes
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a adhesion
653 2 0 |2 Author
|a interfaces
653 2 0 |2 Author
|a nonequilibrium processes
653 2 0 |2 Author
|a reflection interference contrast microscopy
653 2 0 |2 Author
|a vesicles
700 1 _ |a Fenz, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB68680
700 1 _ |a Merkel, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Sengupta, K.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB57655
773 _ _ |a 10.1002/cphc.200900645
|g Vol. 10, p. 2828 - 2838
|p 2828 - 2838
|q 10<2828 - 2838
|0 PERI:(DE-600)2025223-7
|t ChemPhysChem
|v 10
|y 2009
|x 1439-4235
856 7 _ |u http://dx.doi.org/10.1002/cphc.200900645
909 C O |o oai:juser.fz-juelich.de:6444
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
970 _ _ |a VDB:(DE-Juel1)114731
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21