000006489 001__ 6489
000006489 005__ 20180208202504.0
000006489 0247_ $$2DOI$$a10.1007/s00339-009-5240-0
000006489 0247_ $$2WOS$$aWOS:000269844400029
000006489 0247_ $$2ISSN$$a0947-8396
000006489 037__ $$aPreJuSER-6489
000006489 041__ $$aeng
000006489 082__ $$a530
000006489 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000006489 084__ $$2WoS$$aPhysics, Applied
000006489 1001_ $$0P:(DE-HGF)0$$aSzade, J.$$b0
000006489 245__ $$aSelf-neutralization via electroreduction in photoemission from SrTiO3 single crystals
000006489 260__ $$aBerlin$$bSpringer$$c2009
000006489 300__ $$a449 - 454
000006489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000006489 3367_ $$2DataCite$$aOutput Types/Journal article
000006489 3367_ $$00$$2EndNote$$aJournal Article
000006489 3367_ $$2BibTeX$$aARTICLE
000006489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000006489 3367_ $$2DRIVER$$aarticle
000006489 440_0 $$0560$$aApplied Physics A$$v97$$x0947-8396$$y2
000006489 500__ $$aRecord converted from VDB: 12.11.2012
000006489 520__ $$aThe effect of bulk mediated neutralization in photoemission from insulating monocrystalline SrTiO3 was studied. Long-term measurements of the photoemission line shift and emission current allowed us to relate the observed systematic reduction of the surface charging to increasing conductivity of the samples. The bulk resistance of the SrTiO3 samples was found to scale with their thickness. We present a model of the observed behaviour based on well-conducting filaments connecting the surface with the grounded sample holder, similar to the hypothesis explaining resistive switching in single crystals and thin films of SrTiO3. In our model the changes of the local oxygen stoichiometry are driven by surface potential and consequently electric field and chemical gradients, which cause electroreduction and electromigration along extended defects in the crystals.
000006489 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000006489 588__ $$aDataset connected to Web of Science
000006489 650_7 $$2WoSType$$aJ
000006489 7001_ $$0P:(DE-HGF)0$$aPsiuk, B.$$b1
000006489 7001_ $$0P:(DE-HGF)0$$aPilch, M.$$b2
000006489 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000006489 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b4$$uFZJ
000006489 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-009-5240-0$$gVol. 97, p. 449 - 454$$p449 - 454$$q97<449 - 454$$tApplied physics / A$$v97$$x0947-8396$$y2009
000006489 8567_ $$uhttp://dx.doi.org/10.1007/s00339-009-5240-0
000006489 909CO $$ooai:juser.fz-juelich.de:6489$$pVDB
000006489 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000006489 9141_ $$y2009
000006489 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000006489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000006489 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000006489 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000006489 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000006489 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000006489 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000006489 970__ $$aVDB:(DE-Juel1)114796
000006489 980__ $$aVDB
000006489 980__ $$aConvertedRecord
000006489 980__ $$ajournal
000006489 980__ $$aI:(DE-Juel1)PGI-7-20110106
000006489 980__ $$aI:(DE-82)080009_20140620
000006489 980__ $$aUNRESTRICTED
000006489 981__ $$aI:(DE-Juel1)PGI-7-20110106
000006489 981__ $$aI:(DE-Juel1)VDB881