Journal Article PreJuSER-6489

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Self-neutralization via electroreduction in photoemission from SrTiO3 single crystals

 ;  ;  ;  ;

2009
Springer Berlin

Applied physics / A 97, 449 - 454 () [10.1007/s00339-009-5240-0]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The effect of bulk mediated neutralization in photoemission from insulating monocrystalline SrTiO3 was studied. Long-term measurements of the photoemission line shift and emission current allowed us to relate the observed systematic reduction of the surface charging to increasing conductivity of the samples. The bulk resistance of the SrTiO3 samples was found to scale with their thickness. We present a model of the observed behaviour based on well-conducting filaments connecting the surface with the grounded sample holder, similar to the hypothesis explaining resistive switching in single crystals and thin films of SrTiO3. In our model the changes of the local oxygen stoichiometry are driven by surface potential and consequently electric field and chemical gradients, which cause electroreduction and electromigration along extended defects in the crystals.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Elektronische Materialien (IFF-6)
  2. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)

Appears in the scientific report 2009
Database coverage:
JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)