000807757 001__ 807757
000807757 005__ 20210129222726.0
000807757 0247_ $$2doi$$a10.1038/srep23967
000807757 0247_ $$2Handle$$a2128/10148
000807757 0247_ $$2WOS$$aWOS:000373372300002
000807757 037__ $$aFZJ-2016-02175
000807757 082__ $$a000
000807757 1001_ $$0P:(DE-Juel1)157669$$aBreuer, Thomas$$b0
000807757 245__ $$aRealization of Minimum and Maximum Gate Function in Ta$_{2}$O$_{5}$-based Memristive Devices
000807757 260__ $$aLondon$$bNature Publishing Group$$c2016
000807757 3367_ $$2DRIVER$$aarticle
000807757 3367_ $$2DataCite$$aOutput Types/Journal article
000807757 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557382096_25693
000807757 3367_ $$2BibTeX$$aARTICLE
000807757 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807757 3367_ $$00$$2EndNote$$aJournal Article
000807757 520__ $$aRedox-based resistive switching devices (ReRAM) are considered key enablers for future non-volatile memory and logic applications. Functionally enhanced ReRAM devices could enable new hardware concepts, e.g. logic-in-memory or neuromorphic applications. In this work, we demonstrate the implementation of ReRAM-based fuzzy logic gates using Ta2O5 devices to enable analogous Minimum and Maximum operations. The realized gates consist of two anti-serially connected ReRAM cells offering two inputs and one output. The cells offer an endurance up to 106 cycles. By means of exemplary input signals, each gate functionality is verified and signal constraints are highlighted. This realization could improve the efficiency of analogous processing tasks such as sorting networks in the future.
000807757 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000807757 588__ $$aDataset connected to CrossRef
000807757 7001_ $$0P:(DE-HGF)0$$aNielen, Lutz$$b1
000807757 7001_ $$0P:(DE-HGF)0$$aRoesgen, Bernd$$b2
000807757 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b3
000807757 7001_ $$0P:(DE-Juel1)145504$$aRana, Vikas$$b4
000807757 7001_ $$0P:(DE-HGF)0$$aLinn, Eike$$b5$$eCorresponding author
000807757 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep23967$$gVol. 6, p. 23967 -$$p23967 -$$tScientific reports$$v6$$x2045-2322$$y2016
000807757 8564_ $$uhttps://juser.fz-juelich.de/record/807757/files/srep23967.pdf$$yOpenAccess
000807757 8564_ $$uhttps://juser.fz-juelich.de/record/807757/files/srep23967.gif?subformat=icon$$xicon$$yOpenAccess
000807757 8564_ $$uhttps://juser.fz-juelich.de/record/807757/files/srep23967.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000807757 8564_ $$uhttps://juser.fz-juelich.de/record/807757/files/srep23967.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000807757 8564_ $$uhttps://juser.fz-juelich.de/record/807757/files/srep23967.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000807757 8564_ $$uhttps://juser.fz-juelich.de/record/807757/files/srep23967.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000807757 909CO $$ooai:juser.fz-juelich.de:807757$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000807757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157669$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000807757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000807757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000807757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145504$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000807757 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000807757 9141_ $$y2016
000807757 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807757 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000807757 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000807757 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000807757 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2014
000807757 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000807757 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807757 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807757 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000807757 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2014
000807757 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000807757 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807757 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807757 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000807757 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000807757 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000807757 980__ $$ajournal
000807757 980__ $$aVDB
000807757 980__ $$aI:(DE-Juel1)PGI-7-20110106
000807757 980__ $$aI:(DE-82)080009_20140620
000807757 980__ $$aI:(DE-Juel1)PGI-10-20170113
000807757 980__ $$aUNRESTRICTED
000807757 9801_ $$aUNRESTRICTED
000807757 9801_ $$aFullTexts