000808778 001__ 808778
000808778 005__ 20240619083525.0
000808778 0247_ $$2doi$$a10.1103/PhysRevLett.116.167801
000808778 0247_ $$2ISSN$$a0031-9007
000808778 0247_ $$2ISSN$$a1079-7114
000808778 0247_ $$2Handle$$a2128/10426
000808778 0247_ $$2WOS$$aWOS:000374559700014
000808778 0247_ $$2altmetric$$aaltmetric:6160182
000808778 0247_ $$2pmid$$apmid:27152823
000808778 037__ $$aFZJ-2016-02395
000808778 041__ $$aEnglish
000808778 082__ $$a550
000808778 1001_ $$0P:(DE-HGF)0$$aNygård, Kim$$b0$$eCorresponding author
000808778 245__ $$aAnisotropic de Gennes Narrowing in Confined Fluids
000808778 260__ $$aCollege Park, Md.$$bAPS$$c2016
000808778 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1461752399_22729
000808778 3367_ $$2DataCite$$aOutput Types/Journal article
000808778 3367_ $$00$$2EndNote$$aJournal Article
000808778 3367_ $$2BibTeX$$aARTICLE
000808778 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808778 3367_ $$2DRIVER$$aarticle
000808778 520__ $$aThe collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries.
000808778 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000808778 588__ $$aDataset connected to CrossRef
000808778 7001_ $$0P:(DE-Juel1)130577$$aBuitenhuis, Johan$$b1$$ufzj
000808778 7001_ $$0P:(DE-HGF)0$$aKagias, Matias$$b2
000808778 7001_ $$0P:(DE-HGF)0$$aJefimovs, Konstantins$$b3
000808778 7001_ $$0P:(DE-HGF)0$$aZontone, Federico$$b4
000808778 7001_ $$0P:(DE-HGF)0$$aChushkin, Yuriy$$b5
000808778 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.116.167801$$gVol. 116, no. 16, p. 167801$$n16$$p167801$$tPhysical review letters$$v116$$x1079-7114$$y2016
000808778 8564_ $$uhttps://juser.fz-juelich.de/record/808778/files/Nygard2016_PhysRevLett_116_167801_Anisotropic_de_Gennes%20narrowing_in_confined_fluids.pdf$$yOpenAccess
000808778 8564_ $$uhttps://juser.fz-juelich.de/record/808778/files/Nygard2016_PhysRevLett_116_167801_Anisotropic_de_Gennes%20narrowing_in_confined_fluids.gif?subformat=icon$$xicon$$yOpenAccess
000808778 8564_ $$uhttps://juser.fz-juelich.de/record/808778/files/Nygard2016_PhysRevLett_116_167801_Anisotropic_de_Gennes%20narrowing_in_confined_fluids.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808778 8564_ $$uhttps://juser.fz-juelich.de/record/808778/files/Nygard2016_PhysRevLett_116_167801_Anisotropic_de_Gennes%20narrowing_in_confined_fluids.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808778 8564_ $$uhttps://juser.fz-juelich.de/record/808778/files/Nygard2016_PhysRevLett_116_167801_Anisotropic_de_Gennes%20narrowing_in_confined_fluids.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808778 8564_ $$uhttps://juser.fz-juelich.de/record/808778/files/Nygard2016_PhysRevLett_116_167801_Anisotropic_de_Gennes%20narrowing_in_confined_fluids.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808778 909CO $$ooai:juser.fz-juelich.de:808778$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130577$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808778 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000808778 9141_ $$y2016
000808778 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000808778 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808778 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000808778 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000808778 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808778 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808778 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808778 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808778 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808778 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808778 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808778 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808778 920__ $$lyes
000808778 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000808778 9801_ $$aUNRESTRICTED
000808778 9801_ $$aFullTexts
000808778 980__ $$ajournal
000808778 980__ $$aVDB
000808778 980__ $$aUNRESTRICTED
000808778 980__ $$aI:(DE-Juel1)ICS-3-20110106