000808906 001__ 808906
000808906 005__ 20220930130059.0
000808906 0247_ $$2doi$$a10.3389/fnana.2016.00040
000808906 0247_ $$2Handle$$a2128/10431
000808906 0247_ $$2WOS$$aWOS:000374307100001
000808906 0247_ $$2altmetric$$aaltmetric:6789408
000808906 0247_ $$2pmid$$apmid:27147981
000808906 037__ $$aFZJ-2016-02436
000808906 082__ $$a610
000808906 1001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b0$$eCorresponding author$$ufzj
000808906 245__ $$aEstimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging
000808906 260__ $$aLausanne$$bFrontiers Research Foundation$$c2016
000808906 3367_ $$2DRIVER$$aarticle
000808906 3367_ $$2DataCite$$aOutput Types/Journal article
000808906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570524431_4590
000808906 3367_ $$2BibTeX$$aARTICLE
000808906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808906 3367_ $$00$$2EndNote$$aJournal Article
000808906 520__ $$aResearch of the human brain connectome requires multiscale approaches derived from independent imaging methods ideally applied to the same object. Hence, comprehensible strategies for data integration across modalities and across scales are essential. We have successfully established a concept to bridge the spatial scales from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging (3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution functions (pliODFs) from high-resolution vector data via series expansion with spherical harmonics utilizing high performance computing and supercomputing technologies, data fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a large-scale dataset such as the human brain. Validation of our approach was done effectively by means of two types of datasets that were transferred from fiber orientation maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber patterns and real 3D-PLI data derived from sections through the human brain and the brain of a hooded seal.
000808906 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000808906 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000808906 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000808906 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x3
000808906 536__ $$0G:(DE-Juel1)NIH-R01MH092311$$aNIH-R01MH092311 - Postnatal Development of Cortical Receptors and White Matter Tracts in the Vervet (NIH-R01MH092311)$$cNIH-R01MH092311$$fPostnatal Development of Cortical Receptors and White Matter Tracts in the Vervet$$x4
000808906 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x5
000808906 588__ $$aDataset connected to CrossRef
000808906 7001_ $$0P:(DE-Juel1)138466$$aStrohmer, Sven$$b1$$ufzj
000808906 7001_ $$0P:(DE-Juel1)131642$$aGräßel, David$$b2$$ufzj
000808906 7001_ $$0P:(DE-Juel1)132074$$aBücker, Oliver$$b3$$ufzj
000808906 7001_ $$0P:(DE-Juel1)151249$$aDohmen, Melanie$$b4
000808906 7001_ $$0P:(DE-Juel1)142294$$aReckfort, Julia$$b5$$ufzj
000808906 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b6$$ufzj
000808906 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b7$$ufzj
000808906 773__ $$0PERI:(DE-600)2452969-2$$a10.3389/fnana.2016.00040$$gVol. 10$$p40$$tFrontiers in neuroanatomy$$v10$$x1662-5129$$y2016
000808906 8564_ $$uhttps://juser.fz-juelich.de/record/808906/files/Axer_etal_fnana-10-00040.pdf$$yOpenAccess
000808906 8564_ $$uhttps://juser.fz-juelich.de/record/808906/files/Axer_etal_fnana-10-00040.gif?subformat=icon$$xicon$$yOpenAccess
000808906 8564_ $$uhttps://juser.fz-juelich.de/record/808906/files/Axer_etal_fnana-10-00040.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808906 8564_ $$uhttps://juser.fz-juelich.de/record/808906/files/Axer_etal_fnana-10-00040.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808906 8564_ $$uhttps://juser.fz-juelich.de/record/808906/files/Axer_etal_fnana-10-00040.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808906 8564_ $$uhttps://juser.fz-juelich.de/record/808906/files/Axer_etal_fnana-10-00040.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808906 8767_ $$92016-04-05$$d2016-05-10$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1311,-
000808906 909CO $$ooai:juser.fz-juelich.de:808906$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138466$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131642$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132074$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142294$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131714$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000808906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000808906 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000808906 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000808906 9141_ $$y2016
000808906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808906 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000808906 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000808906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROANAT : 2014
000808906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808906 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000808906 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808906 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808906 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808906 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000808906 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000808906 980__ $$ajournal
000808906 980__ $$aVDB
000808906 980__ $$aI:(DE-Juel1)INM-1-20090406
000808906 980__ $$aI:(DE-Juel1)JSC-20090406
000808906 980__ $$aAPC
000808906 980__ $$aUNRESTRICTED
000808906 9801_ $$aAPC
000808906 9801_ $$aUNRESTRICTED
000808906 9801_ $$aFullTexts
000808906 981__ $$aI:(DE-Juel1)JSC-20090406