000809783 001__ 809783
000809783 005__ 20240313095008.0
000809783 0247_ $$2doi$$a10.3389/fnana.2016.00057
000809783 0247_ $$2Handle$$a2128/11281
000809783 0247_ $$2WOS$$aWOS:000376778500001
000809783 0247_ $$2altmetric$$aaltmetric:8274164
000809783 0247_ $$2pmid$$apmid:27303272
000809783 037__ $$aFZJ-2016-02710
000809783 041__ $$aEnglish
000809783 082__ $$a610
000809783 1001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b0$$eCorresponding author
000809783 245__ $$aAutomatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity
000809783 260__ $$aLausanne$$bFrontiers Research Foundation$$c2016
000809783 3367_ $$2DRIVER$$aarticle
000809783 3367_ $$2DataCite$$aOutput Types/Journal article
000809783 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570522527_2021
000809783 3367_ $$2BibTeX$$aARTICLE
000809783 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809783 3367_ $$00$$2EndNote$$aJournal Article
000809783 520__ $$aWith the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.
000809783 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000809783 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000809783 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000809783 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x3
000809783 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
000809783 588__ $$aDataset connected to CrossRef
000809783 7001_ $$0P:(DE-Juel1)157988$$aNaveau, Mikaël$$b1
000809783 7001_ $$0P:(DE-Juel1)158019$$aButz-Ostendorf, Markus$$b2
000809783 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3$$ufzj
000809783 773__ $$0PERI:(DE-600)2452969-2$$a10.3389/fnana.2016.00057$$gVol. 10$$n57$$p1662-5129$$tFrontiers in neuroanatomy$$v10$$x1662-5129$$y2016
000809783 8564_ $$uhttps://juser.fz-juelich.de/record/809783/files/fnana-10-00057.pdf$$yOpenAccess
000809783 8564_ $$uhttps://juser.fz-juelich.de/record/809783/files/fnana-10-00057.gif?subformat=icon$$xicon$$yOpenAccess
000809783 8564_ $$uhttps://juser.fz-juelich.de/record/809783/files/fnana-10-00057.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000809783 8564_ $$uhttps://juser.fz-juelich.de/record/809783/files/fnana-10-00057.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000809783 8564_ $$uhttps://juser.fz-juelich.de/record/809783/files/fnana-10-00057.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000809783 8564_ $$uhttps://juser.fz-juelich.de/record/809783/files/fnana-10-00057.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000809783 8767_ $$92016-06-03$$d2016-06-03$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1311,- Title changed
000809783 909CO $$ooai:juser.fz-juelich.de:809783$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000809783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b0$$kFZJ
000809783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ
000809783 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000809783 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000809783 9141_ $$y2016
000809783 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809783 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809783 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000809783 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000809783 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROANAT : 2014
000809783 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809783 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000809783 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000809783 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000809783 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809783 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809783 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809783 9201_ $$0I:(DE-Juel1)VDB1106$$kIAS$$lInstitute for Advanced Simulation$$x0
000809783 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000809783 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x2
000809783 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000809783 9801_ $$aAPC
000809783 9801_ $$aFullTexts
000809783 980__ $$ajournal
000809783 980__ $$aVDB
000809783 980__ $$aI:(DE-Juel1)VDB1106
000809783 980__ $$aI:(DE-Juel1)JSC-20090406
000809783 980__ $$aI:(DE-Juel1)INM-6-20090406
000809783 980__ $$aI:(DE-82)080012_20140620
000809783 980__ $$aAPC
000809783 980__ $$aUNRESTRICTED
000809783 981__ $$aI:(DE-Juel1)IAS-6-20130828
000809783 981__ $$aI:(DE-Juel1)JSC-20090406
000809783 981__ $$aI:(DE-Juel1)INM-6-20090406