000810170 001__ 810170
000810170 005__ 20240711085638.0
000810170 0247_ $$2doi$$a10.1007/s11666-016-0383-y
000810170 0247_ $$2ISSN$$a1059-9630
000810170 0247_ $$2ISSN$$a1544-1016
000810170 0247_ $$2WOS$$aWOS:000374328500003
000810170 037__ $$aFZJ-2016-03045
000810170 082__ $$a670
000810170 1001_ $$0P:(DE-Juel1)159408$$aMarcano, D.$$b0$$eCorresponding author
000810170 245__ $$aThe Role of Oxygen Partial Pressure in Controlling the Phase Composition of La$_{1−x}$ Sr $_{x}$ Co $_{y}$ Fe$_{1−y}$ O$_{3−δ}$ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition
000810170 260__ $$aBoston, Mass.$$bSpringer$$c2016
000810170 3367_ $$2DRIVER$$aarticle
000810170 3367_ $$2DataCite$$aOutput Types/Journal article
000810170 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1493183481_1224
000810170 3367_ $$2BibTeX$$aARTICLE
000810170 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810170 3367_ $$00$$2EndNote$$aJournal Article
000810170 520__ $$aLa0.58Sr0.4Co0.2Fe0.8O3− δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases
000810170 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000810170 588__ $$aDataset connected to CrossRef
000810170 7001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b1
000810170 7001_ $$0P:(DE-Juel1)159368$$aSohn, Y. J.$$b2
000810170 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3$$ufzj
000810170 7001_ $$0P:(DE-HGF)0$$aGarcia-Fayos, J.$$b4
000810170 7001_ $$0P:(DE-HGF)0$$aSerra, J. M.$$b5
000810170 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-016-0383-y$$gVol. 25, no. 4, p. 631 - 638$$n4$$p631 - 638$$tJournal of thermal spray technology$$v25$$x1544-1016$$y2016
000810170 8564_ $$uhttps://juser.fz-juelich.de/record/810170/files/art_10.1007_s11666-016-0383-y.pdf$$yRestricted
000810170 8564_ $$uhttps://juser.fz-juelich.de/record/810170/files/art_10.1007_s11666-016-0383-y.gif?subformat=icon$$xicon$$yRestricted
000810170 8564_ $$uhttps://juser.fz-juelich.de/record/810170/files/art_10.1007_s11666-016-0383-y.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810170 8564_ $$uhttps://juser.fz-juelich.de/record/810170/files/art_10.1007_s11666-016-0383-y.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810170 8564_ $$uhttps://juser.fz-juelich.de/record/810170/files/art_10.1007_s11666-016-0383-y.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810170 8564_ $$uhttps://juser.fz-juelich.de/record/810170/files/art_10.1007_s11666-016-0383-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810170 909CO $$ooai:juser.fz-juelich.de:810170$$pVDB
000810170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159408$$aForschungszentrum Jülich$$b0$$kFZJ
000810170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b1$$kFZJ
000810170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b2$$kFZJ
000810170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000810170 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000810170 9141_ $$y2016
000810170 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810170 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810170 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2013
000810170 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810170 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810170 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810170 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000810170 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810170 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810170 920__ $$lyes
000810170 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000810170 980__ $$ajournal
000810170 980__ $$aVDB
000810170 980__ $$aI:(DE-Juel1)IEK-1-20101013
000810170 980__ $$aUNRESTRICTED
000810170 981__ $$aI:(DE-Juel1)IMD-2-20101013