000810766 001__ 810766
000810766 005__ 20240712113126.0
000810766 0247_ $$2doi$$a10.1039/C5TA08545D
000810766 0247_ $$2ISSN$$a2050-7488
000810766 0247_ $$2ISSN$$a2050-7496
000810766 0247_ $$2WOS$$aWOS:000368837800043
000810766 037__ $$aFZJ-2016-03355
000810766 082__ $$a540
000810766 1001_ $$0P:(DE-HGF)0$$aRettenwander, D.$$b0$$eCorresponding author
000810766 245__ $$aA microcontact impedance study on NASICON-type Li $_{1+x}$ Al $_{x}$ Ti $_{2−x}$ (PO 4 ) 3 (0 ≤ x ≤ 0.5) single crystals
000810766 260__ $$aLondon {[u.a.]$$bRSC$$c2016
000810766 3367_ $$2DRIVER$$aarticle
000810766 3367_ $$2DataCite$$aOutput Types/Journal article
000810766 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511256919_16395
000810766 3367_ $$2BibTeX$$aARTICLE
000810766 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810766 3367_ $$00$$2EndNote$$aJournal Article
000810766 520__ $$aWe successfully demonstrated the applicability of microcontact impedance spectroscopy (MC IS) on Li+ conducting solid electrolytes and measured the Li+ bulk conductivity (σb) of LiTi2(PO4)3 (LTP) and Li1+xAlxTi2−x(PO4)3 (LATP) single crystals independent of microstructural effects (e.g., grain boundaries, pores, and density). The crystals had a size of about 100 μm in each direction and crystallized with NASICON-type structure (R[3 with combining macron]c). Finite element calculations were performed to validate the impedance data analysis. A strong increase in σb in the order of three magnitudes (3.16 × 10−6 to 1.73 × 10−3 S cm−1) was found after incorporating 0.1 mol Al3+ per formula unit into LTP. Moreover, since the crystal structural changes are almost linear in the LATP system up to x = 0.5, the increase of σb is most probably related to additional Li+ sites at the M3 (36f) position. The additional Li+ leads to a displacement of Li+ occupying the M1 (6b) sites towards the nearest-neighboring M3 position, and therefore opens the fast-conducting pathway within the NASICON structure. A significant change in σb was also observed as the Al3+ content further increased (x = 0.1 to 0.5). The highest σb value of 5.63 × 10−3 S cm−1 was obtained for samples with x = 0.4.
000810766 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000810766 588__ $$aDataset connected to CrossRef
000810766 7001_ $$0P:(DE-HGF)0$$aWelzl, A.$$b1
000810766 7001_ $$0P:(DE-Juel1)151260$$aPristat, S.$$b2$$ufzj
000810766 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b3$$ufzj
000810766 7001_ $$0P:(DE-HGF)0$$aTaibl, S.$$b4
000810766 7001_ $$0P:(DE-HGF)0$$aRedhammer, G. J.$$b5
000810766 7001_ $$0P:(DE-HGF)0$$aFleig, J.$$b6
000810766 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C5TA08545D$$gVol. 4, no. 4, p. 1506 - 1513$$n4$$p1506 - 1513$$tJournal of materials chemistry / A$$v4$$x2050-7496$$y2016
000810766 8564_ $$uhttps://juser.fz-juelich.de/record/810766/files/c5ta08545d.pdf$$yRestricted
000810766 8564_ $$uhttps://juser.fz-juelich.de/record/810766/files/c5ta08545d.gif?subformat=icon$$xicon$$yRestricted
000810766 8564_ $$uhttps://juser.fz-juelich.de/record/810766/files/c5ta08545d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000810766 8564_ $$uhttps://juser.fz-juelich.de/record/810766/files/c5ta08545d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000810766 8564_ $$uhttps://juser.fz-juelich.de/record/810766/files/c5ta08545d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000810766 8564_ $$uhttps://juser.fz-juelich.de/record/810766/files/c5ta08545d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000810766 909CO $$ooai:juser.fz-juelich.de:810766$$pVDB
000810766 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151260$$aForschungszentrum Jülich$$b2$$kFZJ
000810766 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b3$$kFZJ
000810766 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000810766 9141_ $$y2016
000810766 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810766 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000810766 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2014
000810766 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2014
000810766 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810766 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000810766 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810766 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000810766 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000810766 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810766 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000810766 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810766 920__ $$lyes
000810766 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000810766 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000810766 980__ $$ajournal
000810766 980__ $$aVDB
000810766 980__ $$aI:(DE-Juel1)IEK-1-20101013
000810766 980__ $$aI:(DE-Juel1)IEK-12-20141217
000810766 980__ $$aUNRESTRICTED
000810766 981__ $$aI:(DE-Juel1)IMD-4-20141217
000810766 981__ $$aI:(DE-Juel1)IMD-2-20101013