Journal Article FZJ-2016-03355

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A microcontact impedance study on NASICON-type Li $_{1+x}$ Al $_{x}$ Ti $_{2−x}$ (PO 4 ) 3 (0 ≤ x ≤ 0.5) single crystals

 ;  ;  ;  ;  ;  ;

2016
RSC London {[u.a.]

Journal of materials chemistry / A 4(4), 1506 - 1513 () [10.1039/C5TA08545D]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: We successfully demonstrated the applicability of microcontact impedance spectroscopy (MC IS) on Li+ conducting solid electrolytes and measured the Li+ bulk conductivity (σb) of LiTi2(PO4)3 (LTP) and Li1+xAlxTi2−x(PO4)3 (LATP) single crystals independent of microstructural effects (e.g., grain boundaries, pores, and density). The crystals had a size of about 100 μm in each direction and crystallized with NASICON-type structure (R[3 with combining macron]c). Finite element calculations were performed to validate the impedance data analysis. A strong increase in σb in the order of three magnitudes (3.16 × 10−6 to 1.73 × 10−3 S cm−1) was found after incorporating 0.1 mol Al3+ per formula unit into LTP. Moreover, since the crystal structural changes are almost linear in the LATP system up to x = 0.5, the increase of σb is most probably related to additional Li+ sites at the M3 (36f) position. The additional Li+ leads to a displacement of Li+ occupying the M1 (6b) sites towards the nearest-neighboring M3 position, and therefore opens the fast-conducting pathway within the NASICON structure. A significant change in σb was also observed as the Al3+ content further increased (x = 0.1 to 0.5). The highest σb value of 5.63 × 10−3 S cm−1 was obtained for samples with x = 0.4.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2016
Database coverage:
Medline ; Allianz-Lizenz / DFG ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
IEK > IEK-1
Publications database

 Record created 2016-06-24, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)