001     810766
005     20240712113126.0
024 7 _ |a 10.1039/C5TA08545D
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000368837800043
|2 WOS
037 _ _ |a FZJ-2016-03355
082 _ _ |a 540
100 1 _ |a Rettenwander, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A microcontact impedance study on NASICON-type Li $_{1+x}$ Al $_{x}$ Ti $_{2−x}$ (PO 4 ) 3 (0 ≤ x ≤ 0.5) single crystals
260 _ _ |a London {[u.a.]
|c 2016
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511256919_16395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We successfully demonstrated the applicability of microcontact impedance spectroscopy (MC IS) on Li+ conducting solid electrolytes and measured the Li+ bulk conductivity (σb) of LiTi2(PO4)3 (LTP) and Li1+xAlxTi2−x(PO4)3 (LATP) single crystals independent of microstructural effects (e.g., grain boundaries, pores, and density). The crystals had a size of about 100 μm in each direction and crystallized with NASICON-type structure (R[3 with combining macron]c). Finite element calculations were performed to validate the impedance data analysis. A strong increase in σb in the order of three magnitudes (3.16 × 10−6 to 1.73 × 10−3 S cm−1) was found after incorporating 0.1 mol Al3+ per formula unit into LTP. Moreover, since the crystal structural changes are almost linear in the LATP system up to x = 0.5, the increase of σb is most probably related to additional Li+ sites at the M3 (36f) position. The additional Li+ leads to a displacement of Li+ occupying the M1 (6b) sites towards the nearest-neighboring M3 position, and therefore opens the fast-conducting pathway within the NASICON structure. A significant change in σb was also observed as the Al3+ content further increased (x = 0.1 to 0.5). The highest σb value of 5.63 × 10−3 S cm−1 was obtained for samples with x = 0.4.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Welzl, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pristat, S.
|0 P:(DE-Juel1)151260
|b 2
|u fzj
700 1 _ |a Tietz, F.
|0 P:(DE-Juel1)129667
|b 3
|u fzj
700 1 _ |a Taibl, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Redhammer, G. J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fleig, J.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1039/C5TA08545D
|g Vol. 4, no. 4, p. 1506 - 1513
|0 PERI:(DE-600)2702232-8
|n 4
|p 1506 - 1513
|t Journal of materials chemistry / A
|v 4
|y 2016
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/810766/files/c5ta08545d.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810766/files/c5ta08545d.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810766/files/c5ta08545d.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810766/files/c5ta08545d.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810766/files/c5ta08545d.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/810766/files/c5ta08545d.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:810766
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151260
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21