000811332 001__ 811332
000811332 005__ 20250129092354.0
000811332 037__ $$aFZJ-2016-03820
000811332 041__ $$aEnglish
000811332 1001_ $$0P:(DE-Juel1)161528$$aDurini, Daniel$$b0$$eCorresponding author$$ufzj
000811332 1112_ $$aInternational Workshop on Radiation Imaging Detectors$$cBarcelona$$d2016-07-04 - 2016-07-07$$gIWORID$$wSpain
000811332 245__ $$aDark signal performance of different SiPM technologies under irradiation with cold neutrons
000811332 260__ $$c2016
000811332 3367_ $$033$$2EndNote$$aConference Paper
000811332 3367_ $$2BibTeX$$aINPROCEEDINGS
000811332 3367_ $$2DRIVER$$aconferenceObject
000811332 3367_ $$2ORCID$$aCONFERENCE_POSTER
000811332 3367_ $$2DataCite$$aOutput Types/Conference Poster
000811332 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1473338584_12516$$xOther
000811332 520__ $$aThe world-wide shortage of 3He gas has triggered research on novel approaches for thermal and cold neutron detection such as the development of scintillation based detectors to be used in small angle neutron scattering (SANS) experiments. In order to improve the neutron count rates by simplifying the detector readout algorithms and simultaneously increase the detectors space resolution, in SANS instruments requiring detectors with active areas up to 1 m² pixelated scintillator detectors could be the new way to proceed. Here, each detector “pixel” would have the size directly matching the required space resolution. An interesting candidate for the photodetector part in these detectors could be an array of silicon photomultipliers (SiPM), either analog or digital. It would yield the possibility of single photon counting, low power consumption, an acceptable space resolution, neutron counting rates much higher than those achieved by current 3He based detectors, and the complete insensitivity to magnetic fields up to several Tesla. The main risk defined so far is the radiation hardness of SiPM arrays considering thermal or cold neutron irradiation. We investigated the dark signal and breakdown voltage performances of three SiPM technologies, two analog ones and one based on digital counting of avalanche events, both with and without a scintillator material covering the following photodetector arrays: SensL Series C 12x12 ArrayC-30035-144P, Hamamatsu 8 × 8 MPPC array S12642-0808PB-50, and Philips DPC3200-44-22 module. We irradiated the photodetector arrays under test with cold neutrons (lambda_n = 5 Å) at the KWS-1 instrument of the Heinz Maier Leibnitz Zentrum in Garching, Germany, up to a dose of 6E12 n·cm-2. The SiPM detectors were at all times fully operational, and the measurements were performed in-situ. In this work we present the results of the breakdown voltage, dark signal, and gain factor characterization of those SiPM arrays before and after the irradiation.
000811332 536__ $$0G:(DE-HGF)POF3-632$$a632 - Detector technology and systems (POF3-632)$$cPOF3-632$$fPOF III$$x0
000811332 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000811332 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000811332 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x3
000811332 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x4
000811332 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000811332 65017 $$0V:(DE-MLZ)GC-150-2016$$2V:(DE-HGF)$$aKey Technologies$$x0
000811332 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000811332 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b1$$ufzj
000811332 7001_ $$0P:(DE-Juel1)133931$$aRongen, Heinz$$b2$$ufzj
000811332 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b3$$ufzj
000811332 7001_ $$0P:(DE-Juel1)133936$$aSchlösser, Mario$$b4$$ufzj
000811332 7001_ $$0P:(DE-Juel1)168486$$aPalomino Razo, Alejandro$$b5$$ufzj
000811332 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b6$$ufzj
000811332 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b7$$ufzj
000811332 909CO $$ooai:juser.fz-juelich.de:811332$$pVDB$$pVDB:MLZ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161528$$aForschungszentrum Jülich$$b0$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b1$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133931$$aForschungszentrum Jülich$$b2$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b3$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich$$b4$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168486$$aForschungszentrum Jülich$$b5$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b6$$kFZJ
000811332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b7$$kFZJ
000811332 9131_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector technology and systems$$x0
000811332 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000811332 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000811332 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000811332 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x4
000811332 9141_ $$y2016
000811332 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811332 920__ $$lyes
000811332 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000811332 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000811332 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x2
000811332 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000811332 980__ $$aposter
000811332 980__ $$aVDB
000811332 980__ $$aUNRESTRICTED
000811332 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000811332 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000811332 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000811332 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000811332 981__ $$aI:(DE-Juel1)PGI-4-20110106
000811332 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000811332 981__ $$aI:(DE-Juel1)JCNS-2-20110106