Journal Article FZJ-2016-04482

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Wheats developed for high yield on stored soil moisture have deep vigorous root systems

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
CSIRO Publ. Collingwood, Victoria

Functional plant biology 43(2), 173 - 188 () [10.1071/FP15182]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Many rainfed wheat production systems are reliant on stored soil water for some or all of their water inputs. Selection and breeding for root traits could result in a yield benefit; however, breeding for root traits has traditionally been avoided due to the difficulty of phenotyping mature root systems, limited understanding of root system development and function, and the strong influence of environmental conditions on the phenotype of the mature root system. This paper outlines an international field selection program for beneficial root traits at maturity using soil coring in India and Australia. In the rainfed areas of India, wheat is sown at the end of the monsoon into hot soils with a quickly receding soil water profile; in season water inputs are minimal. We hypothesised that wheat selected and bred for high yield under these conditions would have deep, vigorous root systems, allowing them to access and utilise the stored soil water at depth around anthesis and grain-filling when surface layers were dry. The Indian trials resulted in 49 lines being sent to Australia for phenotyping. These lines were ranked against 41 high yielding Australian lines. Variation was observed for deep root traits e.g. in eastern Australia in 2012, maximum depth ranged from 118.8 to 146.3 cm. There was significant variation for root traits between sites and years, however, several Indian genotypes were identified that consistently ranked highly across sites and years for deep rooting traits.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database

 Record created 2016-08-25, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)