001     817960
005     20210129224048.0
024 7 _ |a 10.1088/0953-8984/28/39/395701
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a WOS:000383803700016
|2 WOS
037 _ _ |a FZJ-2016-04539
082 _ _ |a 530
100 1 _ |a Sukhomlinov, Sergey
|0 P:(DE-Juel1)161468
|b 0
245 _ _ |a Constraints on phase stability, defect energies, and elastic constants of metals described by EAM-type potentials
260 _ _ |a Bristol
|c 2016
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1472719733_15966
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We demonstrate that the embedded-atom method and related potentials predict many dimensionless properties of simple metals to depend predominantly on a single coefficient μ, which typically lies between 0.3 and 0.45. Among other relations presented in this work, we find that ${{E}_{\text{c}}}\propto {{Z}^{\mu}}$ , ${{E}_{\text{v}}}/{{E}_{\text{c}}}=\mu $ , and $G/B\propto \mu $ hold within 25% accuracy and also find a linear dependence of the melting temperature on μ. The used variables are cohesive energy E c, coordination number Z, vacancy energy E v, and bulk modulus B, while G is the average of ordinary and tetragonal shear modulus. We provide analytical arguments for these findings, which are obeyed reasonably well by several metals.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/0953-8984/28/39/395701
|g Vol. 28, no. 39, p. 395701 -
|0 PERI:(DE-600)1472968-4
|n 39
|p 395701 -
|t Journal of physics / Condensed matter
|v 28
|y 2016
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/817960/files/cm_28_39_395701.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/817960/files/cm_28_39_395701.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:817960
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144442
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
981 _ _ |a I:(DE-Juel1)NIC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21