001     818146
005     20210129224110.0
024 7 _ |a 10.1103/PhysRevX.6.031035
|2 doi
024 7 _ |a 2128/12271
|2 Handle
024 7 _ |a WOS:000382177500001
|2 WOS
024 7 _ |a altmetric:10915244
|2 altmetric
037 _ _ |a FZJ-2016-04662
082 _ _ |a 530
100 1 _ |a Gunkel, F.
|0 P:(DE-Juel1)130677
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Defect Control of Conventional and Anomalous Electron Transport at Complex Oxide Interfaces
260 _ _ |a College Park, Md.
|c 2016
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1473233781_29452
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO3/SrTiO3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10  K. Considering these two sources of nonlinearity, we suggest a phenomenological model capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. The most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bell, Chris
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Inoue, Hisashi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kim, Bongju
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Swartz, Adrian G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Merz, Tyler A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hikita, Yasuyuki
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Harashima, Satoshi
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sato, Hiroki K.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Minohara, Makoto
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 10
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 11
700 1 _ |a Hwang, Harold Y.
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1103/PhysRevX.6.031035
|g Vol. 6, no. 3, p. 031035
|0 PERI:(DE-600)2622565-7
|n 3
|p 031035
|t Physical review / X
|v 6
|y 2016
|x 2160-3308
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/818146/files/PhysRevX.6.031035.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/818146/files/PhysRevX.6.031035.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/818146/files/PhysRevX.6.031035.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/818146/files/PhysRevX.6.031035.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/818146/files/PhysRevX.6.031035.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/818146/files/PhysRevX.6.031035.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:818146
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV X : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV X : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21