000818247 001__ 818247
000818247 005__ 20240610121333.0
000818247 0247_ $$2doi$$a10.1063/1.4942462
000818247 0247_ $$2ISSN$$a0003-6951
000818247 0247_ $$2ISSN$$a1077-3118
000818247 0247_ $$2WOS$$aWOS:000373057000044
000818247 0247_ $$2Handle$$a2128/17300
000818247 0247_ $$2altmetric$$aaltmetric:5983655
000818247 037__ $$aFZJ-2016-04725
000818247 041__ $$aEnglish
000818247 082__ $$a530
000818247 1001_ $$0P:(DE-HGF)0$$aPozzi, Giulio$$b0
000818247 245__ $$aExperimental realization of the Ehrenberg-Siday thought experiment
000818247 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2016
000818247 3367_ $$2DRIVER$$aarticle
000818247 3367_ $$2DataCite$$aOutput Types/Journal article
000818247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1497013474_12003
000818247 3367_ $$2BibTeX$$aARTICLE
000818247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000818247 3367_ $$00$$2EndNote$$aJournal Article
000818247 520__ $$aIn 1949, at the end of a paper dedicated to the concept of the refractive index in electron optics, Ehrenberg and Siday noted that wave-optical effects will arise from an isolated magnetic field even when the rays themselves travel in magnetic-field-free space. They proposed a two-slit experiment, in which a magnetic flux is enclosed between interfering electron beams. Now, through access to modern nanotechnology tools, we used a focused ion beam to open two nanosized slits in a gold-coated silicon nitride membrane and focused electron beam induced deposition to fabricate a thin magnetic bar between the two slits. We then performed Fraunhofer experiments in a transmission electron microscope equipped with a field emission gun and a Lorentz lens. By tilting the specimen in the objective lens field of the electron microscope, the magnetization of the bar could be reversed and the corresponding change in the phase of the electron wave observed directly in the form of a shift in the interference fringe pattern.
000818247 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000818247 588__ $$aDataset connected to CrossRef
000818247 7001_ $$0P:(DE-HGF)0$$aBoothroyd, Chris B.$$b1
000818247 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b2$$ufzj
000818247 7001_ $$0P:(DE-HGF)0$$aYücelen, Emrah$$b3
000818247 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b4$$eCorresponding author
000818247 7001_ $$0P:(DE-HGF)0$$aFrabboni, Stefano$$b5
000818247 7001_ $$0P:(DE-HGF)0$$aGazzadi, Gian Carlo$$b6
000818247 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4942462$$gVol. 108, no. 8, p. 083108 -$$n8$$p083108$$tApplied physics letters$$v108$$x1077-3118$$y2016
000818247 8564_ $$uhttps://juser.fz-juelich.de/record/818247/files/1.4942462-1.pdf$$yOpenAccess
000818247 8564_ $$uhttps://juser.fz-juelich.de/record/818247/files/1.4942462-1.gif?subformat=icon$$xicon$$yOpenAccess
000818247 8564_ $$uhttps://juser.fz-juelich.de/record/818247/files/1.4942462-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000818247 8564_ $$uhttps://juser.fz-juelich.de/record/818247/files/1.4942462-1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000818247 8564_ $$uhttps://juser.fz-juelich.de/record/818247/files/1.4942462-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000818247 8767_ $$83824100667435$$92016-03-08$$d2016-03-09$$eHybrid-OA$$jZahlung erfolgt$$p1.4942462
000818247 909CO $$ooai:juser.fz-juelich.de:818247$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000818247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b2$$kFZJ
000818247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000818247 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000818247 9141_ $$y2017
000818247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000818247 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000818247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015
000818247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000818247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000818247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000818247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000818247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000818247 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000818247 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000818247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000818247 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000818247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000818247 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000818247 9801_ $$aAPC
000818247 9801_ $$aFullTexts
000818247 980__ $$ajournal
000818247 980__ $$aVDB
000818247 980__ $$aUNRESTRICTED
000818247 980__ $$aI:(DE-Juel1)PGI-5-20110106
000818247 980__ $$aAPC
000818247 981__ $$aI:(DE-Juel1)ER-C-1-20170209