000819401 001__ 819401
000819401 005__ 20230426083137.0
000819401 0247_ $$2doi$$a10.1103/PhysRevB.94.104516
000819401 0247_ $$2ISSN$$a0163-1829
000819401 0247_ $$2ISSN$$a0556-2805
000819401 0247_ $$2ISSN$$a1094-1622
000819401 0247_ $$2ISSN$$a1095-3795
000819401 0247_ $$2ISSN$$a1098-0121
000819401 0247_ $$2ISSN$$a1550-235X
000819401 0247_ $$2ISSN$$a2469-9950
000819401 0247_ $$2ISSN$$a2469-9969
000819401 0247_ $$2Handle$$a2128/12447
000819401 0247_ $$2WOS$$aWOS:000383858800002
000819401 0247_ $$2altmetric$$aaltmetric:8776538
000819401 037__ $$aFZJ-2016-05089
000819401 082__ $$a530
000819401 1001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman$$b0$$ufzj
000819401 245__ $$aNormal-metal quasiparticle traps for superconducting qubits
000819401 260__ $$aWoodbury, NY$$bInst.$$c2016
000819401 3367_ $$2DRIVER$$aarticle
000819401 3367_ $$2DataCite$$aOutput Types/Journal article
000819401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1475238050_2670
000819401 3367_ $$2BibTeX$$aARTICLE
000819401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819401 3367_ $$00$$2EndNote$$aJournal Article
000819401 520__ $$aThe presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on their coherence. While it is difficult to prevent the generation of quasiparticles, keeping them away from active elements of the qubit provides a viable way of improving the device performance. Here we develop theoretically and validate experimentally a model for the effect of a single small trap on the dynamics of the excess quasiparticles injected in a transmon-type qubit. The model allows one to evaluate the time it takes to evacuate the injected quasiparticles from the transmon as a function of trap parameters. With the increase of the trap size, this time decreases monotonically, saturating at the level determined by the quasiparticles diffusion constant and the qubit geometry. We determine the characteristic trap size needed for the relaxation time to approach that saturation value.
000819401 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000819401 542__ $$2Crossref$$i2016-09-20$$uhttp://link.aps.org/licenses/aps-default-license
000819401 542__ $$2Crossref$$i2017-09-20$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license
000819401 588__ $$aDataset connected to CrossRef
000819401 7001_ $$0P:(DE-Juel1)164373$$aHosseinkhani, A.$$b1$$ufzj
000819401 7001_ $$0P:(DE-HGF)0$$aBurkhart, L. D.$$b2
000819401 7001_ $$0P:(DE-HGF)0$$aGao, Y. Y.$$b3
000819401 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, R. J.$$b4
000819401 7001_ $$0P:(DE-HGF)0$$aGlazman, L. I.$$b5
000819401 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b6$$eCorresponding author$$ufzj
000819401 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.94.104516$$bAmerican Physical Society (APS)$$d2016-09-20$$n10$$p104516$$tPhysical Review B$$v94$$x2469-9950$$y2016
000819401 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.94.104516$$gVol. 94, no. 10, p. 104516$$n10$$p104516$$tPhysical review / B$$v94$$x2469-9950$$y2016
000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.pdf$$yOpenAccess
000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.gif?subformat=icon$$xicon$$yOpenAccess
000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819401 909CO $$ooai:juser.fz-juelich.de:819401$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000819401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b0$$kFZJ
000819401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164373$$aForschungszentrum Jülich$$b1$$kFZJ
000819401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b6$$kFZJ
000819401 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000819401 9141_ $$y2016
000819401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819401 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819401 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000819401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000819401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819401 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819401 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819401 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819401 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819401 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819401 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819401 920__ $$lyes
000819401 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000819401 980__ $$ajournal
000819401 980__ $$aVDB
000819401 980__ $$aUNRESTRICTED
000819401 980__ $$aI:(DE-Juel1)PGI-2-20110106
000819401 9801_ $$aFullTexts
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01307630
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.85.1421
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11128-004-3101-5
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.077002
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.240501
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.066802
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.230509
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.122493
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.117002
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6836
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10977
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.214521
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.020505
000819401 999C5 $$1N. W. Ashcroft$$2Crossref$$oN. W. Ashcroft Solid State Physics 1976$$tSolid State Physics$$y1976
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.036802
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.19.27
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.14.4854
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2936
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.167004
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.195434
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.180504
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064517
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.247001
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018738100101407
000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.134504