000819401 001__ 819401 000819401 005__ 20230426083137.0 000819401 0247_ $$2doi$$a10.1103/PhysRevB.94.104516 000819401 0247_ $$2ISSN$$a0163-1829 000819401 0247_ $$2ISSN$$a0556-2805 000819401 0247_ $$2ISSN$$a1094-1622 000819401 0247_ $$2ISSN$$a1095-3795 000819401 0247_ $$2ISSN$$a1098-0121 000819401 0247_ $$2ISSN$$a1550-235X 000819401 0247_ $$2ISSN$$a2469-9950 000819401 0247_ $$2ISSN$$a2469-9969 000819401 0247_ $$2Handle$$a2128/12447 000819401 0247_ $$2WOS$$aWOS:000383858800002 000819401 0247_ $$2altmetric$$aaltmetric:8776538 000819401 037__ $$aFZJ-2016-05089 000819401 082__ $$a530 000819401 1001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman$$b0$$ufzj 000819401 245__ $$aNormal-metal quasiparticle traps for superconducting qubits 000819401 260__ $$aWoodbury, NY$$bInst.$$c2016 000819401 3367_ $$2DRIVER$$aarticle 000819401 3367_ $$2DataCite$$aOutput Types/Journal article 000819401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1475238050_2670 000819401 3367_ $$2BibTeX$$aARTICLE 000819401 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000819401 3367_ $$00$$2EndNote$$aJournal Article 000819401 520__ $$aThe presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on their coherence. While it is difficult to prevent the generation of quasiparticles, keeping them away from active elements of the qubit provides a viable way of improving the device performance. Here we develop theoretically and validate experimentally a model for the effect of a single small trap on the dynamics of the excess quasiparticles injected in a transmon-type qubit. The model allows one to evaluate the time it takes to evacuate the injected quasiparticles from the transmon as a function of trap parameters. With the increase of the trap size, this time decreases monotonically, saturating at the level determined by the quasiparticles diffusion constant and the qubit geometry. We determine the characteristic trap size needed for the relaxation time to approach that saturation value. 000819401 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000819401 542__ $$2Crossref$$i2016-09-20$$uhttp://link.aps.org/licenses/aps-default-license 000819401 542__ $$2Crossref$$i2017-09-20$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license 000819401 588__ $$aDataset connected to CrossRef 000819401 7001_ $$0P:(DE-Juel1)164373$$aHosseinkhani, A.$$b1$$ufzj 000819401 7001_ $$0P:(DE-HGF)0$$aBurkhart, L. D.$$b2 000819401 7001_ $$0P:(DE-HGF)0$$aGao, Y. Y.$$b3 000819401 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, R. J.$$b4 000819401 7001_ $$0P:(DE-HGF)0$$aGlazman, L. I.$$b5 000819401 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b6$$eCorresponding author$$ufzj 000819401 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.94.104516$$bAmerican Physical Society (APS)$$d2016-09-20$$n10$$p104516$$tPhysical Review B$$v94$$x2469-9950$$y2016 000819401 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.94.104516$$gVol. 94, no. 10, p. 104516$$n10$$p104516$$tPhysical review / B$$v94$$x2469-9950$$y2016 000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.pdf$$yOpenAccess 000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.gif?subformat=icon$$xicon$$yOpenAccess 000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000819401 8564_ $$uhttps://juser.fz-juelich.de/record/819401/files/PhysRevB.94.104516.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000819401 909CO $$ooai:juser.fz-juelich.de:819401$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000819401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b0$$kFZJ 000819401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164373$$aForschungszentrum Jülich$$b1$$kFZJ 000819401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b6$$kFZJ 000819401 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000819401 9141_ $$y2016 000819401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000819401 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000819401 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000819401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015 000819401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000819401 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000819401 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000819401 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000819401 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000819401 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000819401 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000819401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000819401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000819401 920__ $$lyes 000819401 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000819401 980__ $$ajournal 000819401 980__ $$aVDB 000819401 980__ $$aUNRESTRICTED 000819401 980__ $$aI:(DE-Juel1)PGI-2-20110106 000819401 9801_ $$aFullTexts 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01307630 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.85.1421 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11128-004-3101-5 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.077002 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.240501 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.066802 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.230509 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.122493 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.117002 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6836 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10977 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.214521 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.020505 000819401 999C5 $$1N. W. Ashcroft$$2Crossref$$oN. W. Ashcroft Solid State Physics 1976$$tSolid State Physics$$y1976 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.036802 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.19.27 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.14.4854 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2936 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.167004 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.195434 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.180504 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064517 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.247001 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018738100101407 000819401 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.134504