000819515 001__ 819515
000819515 005__ 20220930130107.0
000819515 0247_ $$2doi$$a10.1038/nphys3737
000819515 0247_ $$2ISSN$$a1745-2473
000819515 0247_ $$2ISSN$$a1745-2481
000819515 0247_ $$2WOS$$aWOS:000383219800015
000819515 0247_ $$2altmetric$$aaltmetric:6950431
000819515 037__ $$aFZJ-2016-05158
000819515 041__ $$aEnglish
000819515 082__ $$a530
000819515 1001_ $$0P:(DE-Juel1)156533$$aEsat, Taner$$b0
000819515 245__ $$aA chemically driven quantum phase transition in a two-molecule Kondo system
000819515 260__ $$aBasingstoke$$bNature Publishing Group$$c2016
000819515 3367_ $$2DRIVER$$aarticle
000819515 3367_ $$2DataCite$$aOutput Types/Journal article
000819515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502086303_15126
000819515 3367_ $$2BibTeX$$aARTICLE
000819515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819515 3367_ $$00$$2EndNote$$aJournal Article
000819515 520__ $$aThe magnetic properties of nanostructures that consist of a small number of atoms or molecules are typically determined by magnetic exchange interactions. Here, we show that non-magnetic, chemical interactions can have a similarly decisive effect if spin-moment-carrying orbitals extend in space and therefore allow the direct coupling of magnetic properties to wavefunction overlap and the formation of bonding and antibonding orbitals. We demonstrate this for a dimer of metal–molecule complexes on the Au(111) surface. A changing wavefunction overlap between the two monomers drives the surface-adsorbed dimer through a quantum phase transition from an underscreened triplet to a singlet ground state, with one configuration being located extremely close to a quantum critical point.
000819515 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000819515 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000819515 536__ $$0G:(DE-Juel1)hhb00_20130501$$aNonequilibrium dynamics of quantum impurity systems close quantum phase transitions (hhb00_20130501)$$chhb00_20130501$$fNonequilibrium dynamics of quantum impurity systems close quantum phase transitions$$x2
000819515 536__ $$0G:(DE-Juel1)hms17_20140501$$aSpectra of 2D layered materials (hms17_20140501)$$chms17_20140501$$fSpectra of 2D layered materials$$x3
000819515 588__ $$aDataset connected to CrossRef
000819515 7001_ $$0P:(DE-HGF)0$$aLechtenberg, Benedikt$$b1
000819515 7001_ $$0P:(DE-HGF)0$$aDeilmann, Thorsten$$b2
000819515 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b3
000819515 7001_ $$0P:(DE-HGF)0$$aKrüger, Peter$$b4
000819515 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b5
000819515 7001_ $$0P:(DE-HGF)0$$aRohlfing, Michael$$b6
000819515 7001_ $$0P:(DE-HGF)0$$aAnders, Frithjof B.$$b7
000819515 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b8$$eCorresponding author
000819515 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/nphys3737$$gVol. 12, no. 9, p. 867 - 873$$n9$$p867 - 873$$tNature physics$$v12$$x1745-2481$$y2016
000819515 8564_ $$uhttps://juser.fz-juelich.de/record/819515/files/nphys3737.pdf$$yRestricted
000819515 8564_ $$uhttps://juser.fz-juelich.de/record/819515/files/nphys3737.gif?subformat=icon$$xicon$$yRestricted
000819515 8564_ $$uhttps://juser.fz-juelich.de/record/819515/files/nphys3737.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000819515 8564_ $$uhttps://juser.fz-juelich.de/record/819515/files/nphys3737.jpg?subformat=icon-180$$xicon-180$$yRestricted
000819515 8564_ $$uhttps://juser.fz-juelich.de/record/819515/files/nphys3737.jpg?subformat=icon-640$$xicon-640$$yRestricted
000819515 8564_ $$uhttps://juser.fz-juelich.de/record/819515/files/nphys3737.pdf?subformat=pdfa$$xpdfa$$yRestricted
000819515 8767_ $$92016-08-02$$d2016-08-02$$ePublication charges$$jZahlung erfolgt$$zGBP 1.025,-
000819515 909CO $$ooai:juser.fz-juelich.de:819515$$pOpenAPC$$pVDB$$popenCost
000819515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819515 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000819515 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000819515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2015
000819515 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2015
000819515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819515 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819515 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819515 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000819515 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819515 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000819515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819515 9141_ $$y2016
000819515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156533$$aForschungszentrum Jülich$$b0$$kFZJ
000819515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b3$$kFZJ
000819515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b5$$kFZJ
000819515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000819515 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000819515 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000819515 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000819515 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000819515 980__ $$ajournal
000819515 980__ $$aVDB
000819515 980__ $$aI:(DE-Juel1)PGI-3-20110106
000819515 980__ $$aI:(DE-Juel1)NIC-20090406
000819515 980__ $$aUNRESTRICTED
000819515 980__ $$aAPC