001     819515
005     20220930130107.0
024 7 _ |2 doi
|a 10.1038/nphys3737
024 7 _ |2 ISSN
|a 1745-2473
024 7 _ |2 ISSN
|a 1745-2481
024 7 _ |2 WOS
|a WOS:000383219800015
024 7 _ |a altmetric:6950431
|2 altmetric
037 _ _ |a FZJ-2016-05158
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)156533
|a Esat, Taner
|b 0
245 _ _ |a A chemically driven quantum phase transition in a two-molecule Kondo system
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1502086303_15126
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The magnetic properties of nanostructures that consist of a small number of atoms or molecules are typically determined by magnetic exchange interactions. Here, we show that non-magnetic, chemical interactions can have a similarly decisive effect if spin-moment-carrying orbitals extend in space and therefore allow the direct coupling of magnetic properties to wavefunction overlap and the formation of bonding and antibonding orbitals. We demonstrate this for a dimer of metal–molecule complexes on the Au(111) surface. A changing wavefunction overlap between the two monomers drives the surface-adsorbed dimer through a quantum phase transition from an underscreened triplet to a singlet ground state, with one configuration being located extremely close to a quantum critical point.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)hhb00_20130501
|a Nonequilibrium dynamics of quantum impurity systems close quantum phase transitions (hhb00_20130501)
|c hhb00_20130501
|f Nonequilibrium dynamics of quantum impurity systems close quantum phase transitions
|x 2
536 _ _ |0 G:(DE-Juel1)hms17_20140501
|a Spectra of 2D layered materials (hms17_20140501)
|c hms17_20140501
|f Spectra of 2D layered materials
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Lechtenberg, Benedikt
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Deilmann, Thorsten
|b 2
700 1 _ |0 P:(DE-Juel1)140276
|a Wagner, Christian
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Krüger, Peter
|b 4
700 1 _ |0 P:(DE-Juel1)128792
|a Temirov, Ruslan
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Rohlfing, Michael
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Anders, Frithjof B.
|b 7
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. S.
|b 8
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2206346-8
|a 10.1038/nphys3737
|g Vol. 12, no. 9, p. 867 - 873
|n 9
|p 867 - 873
|t Nature physics
|v 12
|x 1745-2481
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/819515/files/nphys3737.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819515/files/nphys3737.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819515/files/nphys3737.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819515/files/nphys3737.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819515/files/nphys3737.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/819515/files/nphys3737.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:819515
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156533
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)140276
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128792
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT PHYS : 2015
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b NAT PHYS : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21