000819528 001__ 819528
000819528 005__ 20240313103114.0
000819528 0247_ $$2doi$$a10.3389/fninf.2016.00031
000819528 0247_ $$2Handle$$a2128/12490
000819528 0247_ $$2altmetric$$aaltmetric:6788741
000819528 0247_ $$2pmid$$apmid:27536234
000819528 0247_ $$2WOS$$aWOS:000380668600001
000819528 037__ $$aFZJ-2016-05171
000819528 041__ $$aEnglish
000819528 082__ $$a610
000819528 1001_ $$0P:(DE-Juel1)162278$$aWeidel, Philipp$$b0$$eCorresponding author$$ufzj
000819528 245__ $$aClosed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS
000819528 260__ $$aLausanne$$bFrontiers Research Foundation$$c2016
000819528 3367_ $$2DRIVER$$aarticle
000819528 3367_ $$2DataCite$$aOutput Types/Journal article
000819528 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563262754_1217
000819528 3367_ $$2BibTeX$$aARTICLE
000819528 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819528 3367_ $$00$$2EndNote$$aJournal Article
000819528 520__ $$aIn order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning.
000819528 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000819528 536__ $$0G:(DE-Juel1)BMBF-01GQ1343$$aRL-BRD-J - Neural network mechanisms of reinforcement learning (BMBF-01GQ1343)$$cBMBF-01GQ1343$$x1
000819528 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x2
000819528 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000819528 588__ $$aDataset connected to CrossRef
000819528 7001_ $$0P:(DE-HGF)0$$aDjurfeldt, Mikael$$b1
000819528 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2$$ufzj
000819528 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b3$$ufzj
000819528 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2016.00031$$gVol. 10$$p31$$tFrontiers in neuroinformatics$$v10$$x1662-5196$$y2016
000819528 8564_ $$uhttps://juser.fz-juelich.de/record/819528/files/fninf-10-00031.pdf$$yOpenAccess
000819528 8564_ $$uhttps://juser.fz-juelich.de/record/819528/files/fninf-10-00031.gif?subformat=icon$$xicon$$yOpenAccess
000819528 8564_ $$uhttps://juser.fz-juelich.de/record/819528/files/fninf-10-00031.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819528 8564_ $$uhttps://juser.fz-juelich.de/record/819528/files/fninf-10-00031.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819528 8564_ $$uhttps://juser.fz-juelich.de/record/819528/files/fninf-10-00031.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819528 8564_ $$uhttps://juser.fz-juelich.de/record/819528/files/fninf-10-00031.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819528 8767_ $$92016-09-07$$d2016-09-07$$eAPC$$jDeposit$$lDeposit: Frontiers
000819528 909CO $$ooai:juser.fz-juelich.de:819528$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000819528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162278$$aForschungszentrum Jülich$$b0$$kFZJ
000819528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
000819528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165640$$aForschungszentrum Jülich$$b3$$kFZJ
000819528 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000819528 9141_ $$y2016
000819528 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819528 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819528 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000819528 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2015
000819528 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819528 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819528 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819528 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819528 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000819528 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819528 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819528 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819528 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000819528 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000819528 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000819528 9801_ $$aAPC
000819528 9801_ $$aFullTexts
000819528 980__ $$ajournal
000819528 980__ $$aVDB
000819528 980__ $$aI:(DE-Juel1)INM-6-20090406
000819528 980__ $$aI:(DE-Juel1)IAS-6-20130828
000819528 980__ $$aI:(DE-82)080010_20140620
000819528 980__ $$aAPC
000819528 980__ $$aUNRESTRICTED
000819528 981__ $$aI:(DE-Juel1)IAS-6-20130828
000819528 981__ $$aI:(DE-Juel1)IAS-6-20130828