001     819713
005     20210129224339.0
024 7 _ |a 10.1103/PhysRevLett.117.116101
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 2128/12515
|2 Handle
024 7 _ |a WOS:000383247000003
|2 WOS
024 7 _ |a altmetric:11869205
|2 altmetric
024 7 _ |a pmid:27661702
|2 pmid
037 _ _ |a FZJ-2016-05314
082 _ _ |a 550
100 1 _ |a Zhao, J. Z.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Quasi-One-Dimensional Metal-Insulator Transitions in Compound Semiconductor Surfaces
260 _ _ |a College Park, Md.
|c 2016
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1476348126_31315
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Existing examples of Peierls-type 1D systems on surfaces involve depositing metallic overlayers on semiconducting substrates, in particular, at step edges. Here we propose a new class of Peierls system on the (101¯0) surface of metal-anion wurtzite semiconductors. When the anions are bonded to hydrogen or lithium atoms, we obtain rows of threefold coordinated metal atoms that act as one-atom-wide metallic structures. First-principles calculations show that the surface is metallic, and below a certain critical temperature the surface will condense to a semiconducting state. The idea of surface scaffolding is introduced in which the rows are constrained to move along simple up-down and/or sideways displacements, mirroring the paradigm envisioned in Peierls’s description. We predict that this type of insulating state should be visible in the partially hydrogenated (101¯0) surface of many wurtzite compounds.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fan, W.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Verstraete, M. J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zanolli, Zeila
|0 P:(DE-Juel1)151302
|b 3
|u fzj
700 1 _ |a Fan, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yang, X. B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Xu, H.
|0 P:(DE-Juel1)168272
|b 6
|u fzj
700 1 _ |a Tong, S. Y.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1103/PhysRevLett.117.116101
|g Vol. 117, no. 11, p. 116101
|0 PERI:(DE-600)1472655-5
|n 11
|p 116101
|t Physical review letters
|v 117
|y 2016
|x 1079-7114
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/819713/files/PhysRevLett.117.116101.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/819713/files/PhysRevLett.117.116101.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/819713/files/PhysRevLett.117.116101.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/819713/files/PhysRevLett.117.116101.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/819713/files/PhysRevLett.117.116101.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/819713/files/PhysRevLett.117.116101.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:819713
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151302
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168272
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21