000820002 001__ 820002
000820002 005__ 20240619091658.0
000820002 0247_ $$2doi$$a10.1039/C6CP04146A
000820002 0247_ $$2ISSN$$a1463-9076
000820002 0247_ $$2ISSN$$a1463-9084
000820002 0247_ $$2Handle$$a2128/12594
000820002 0247_ $$2WOS$$aWOS:000381418000062
000820002 037__ $$aFZJ-2016-05569
000820002 041__ $$aEnglish
000820002 082__ $$a540
000820002 1001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas$$b0$$eCorresponding author$$ufzj
000820002 245__ $$aPicosecond to nanosecond dynamics provide a source of conformational entropy for protein folding
000820002 260__ $$aCambridge$$bRSC Publ.$$c2016
000820002 3367_ $$2DRIVER$$aarticle
000820002 3367_ $$2DataCite$$aOutput Types/Journal article
000820002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478096089_9978
000820002 3367_ $$2BibTeX$$aARTICLE
000820002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820002 3367_ $$00$$2EndNote$$aJournal Article
000820002 520__ $$aMyoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin.
000820002 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000820002 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000820002 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000820002 588__ $$aDataset connected to CrossRef
000820002 7001_ $$0P:(DE-HGF)0$$aDemmel, Franz$$b1
000820002 7001_ $$0P:(DE-HGF)0$$aOllivier, Jacques$$b2
000820002 7001_ $$0P:(DE-HGF)0$$aSeydel, Tilo$$b3
000820002 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C6CP04146A$$gVol. 18, no. 31, p. 21527 - 21538$$n31$$p21527 - 21538$$tPhysical chemistry, chemical physics$$v18$$x1463-9084$$y2016
000820002 8564_ $$uhttps://juser.fz-juelich.de/record/820002/files/c6cp04146a.pdf$$yOpenAccess
000820002 8564_ $$uhttps://juser.fz-juelich.de/record/820002/files/c6cp04146a.gif?subformat=icon$$xicon$$yOpenAccess
000820002 8564_ $$uhttps://juser.fz-juelich.de/record/820002/files/c6cp04146a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820002 8564_ $$uhttps://juser.fz-juelich.de/record/820002/files/c6cp04146a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820002 8564_ $$uhttps://juser.fz-juelich.de/record/820002/files/c6cp04146a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820002 8564_ $$uhttps://juser.fz-juelich.de/record/820002/files/c6cp04146a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820002 909CO $$ooai:juser.fz-juelich.de:820002$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000820002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b0$$kFZJ
000820002 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000820002 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000820002 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000820002 9141_ $$y2016
000820002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820002 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000820002 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000820002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820002 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820002 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820002 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820002 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000820002 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820002 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820002 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820002 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0
000820002 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000820002 9801_ $$aFullTexts
000820002 980__ $$ajournal
000820002 980__ $$aVDB
000820002 980__ $$aUNRESTRICTED
000820002 980__ $$aI:(DE-Juel1)ICS-1-20110106
000820002 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000820002 981__ $$aI:(DE-Juel1)IBI-8-20200312
000820002 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000820002 981__ $$aI:(DE-Juel1)JCNS-1-20110106