Journal Article FZJ-2016-05569

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding

 ;  ;  ;

2016
RSC Publ. Cambridge

Physical chemistry, chemical physics 18(31), 21527 - 21538 () [10.1039/C6CP04146A]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin.

Classification:

Contributing Institute(s):
  1. Neutronenstreuung (ICS-1)
  2. Neutronenstreuung (Neutronenstreuung ; JCNS-1)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
  3. 6215 - Soft Matter, Health and Life Sciences (POF3-621) (POF3-621)

Appears in the scientific report 2016
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 3.0 ; OpenAccess ; Allianz-Lizenz / DFG ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-1
Institute Collections > IBI > IBI-8
Workflow collections > Public records
ICS > ICS-1
Publications database
Open Access

 Record created 2016-10-24, last modified 2024-06-19